The spectral extinction coefficients of soot aggregates were studied in the fuel-lean (overfire) region of buoyant turbulent diffusion flames. Extinction measurements were carried out in the wavelength region of 0.2–5.2 μm for flames fueled with acetylene, propylene, ethylene, and propane, burning in air. The present measurements were combined with earlier measurements of soot morphology and light scattering at 0.514 μm in order to evaluate the spectral soot refractive indices reported by Dalzell and Sarofim (1969), Lee and Tien (1981), and Chang and Charalampopoulos (1990). The specific extinction coefficients and emissivities were predicted based on Rayleigh–Debye–Gans theory for polydisperse fractal aggregates, which has been recently found to be the best approximation to treat optical cross sections of soot aggregates. The results indicated that available refractive indices of soot do not predict the spectral trends of present measurements in the ultraviolet and infrared regions. Soot complex refractive index was inferred to be m = 1.54 + 0.48i at 0.514 μm, which is surprisingly in best agreement with the values reported by Dalzell and Sarofim (1969). Additionally, specific extinction coefficients of soot aggregates varied with wavelength as λ0.83 from the visible to the infrared. Finally, soot refractive indices were found to be relatively independent of fuel type for the visible and infrared spectral regions over the H/C ratio range of 0.08–0.22.

1.
Bohren, C. F., and Huffman, D. R., 1983, Absorption and Scattering of Light by Small Particles, Wiley, New York, pp. 69–81.
2.
Chang
H.
, and
Charalampopoulos
T. T.
,
1990
, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. R. Soc. London A
, Vol.
430
, pp.
577
591
.
3.
Charalampopoulos
T. T.
,
1992
, “
Morphology and Dynamics of Agglomerated Particulates in Combustion Systems Using Light Scattering Techniques
,”
Prog. Energy Combust. Sci.
, Vol.
18
, pp.
13
45
.
4.
Charalampopoulos
T. T.
,
Chang
H.
, and
Stagg
B. J.
,
1989
, “
The Effects of Temperature and Composition on the Complex Refractive Index of Flame Soot
,”
Fuel
, Vol.
68
, pp.
1173
1179
.
5.
Choi
M. Y.
,
Hamins
A.
,
Mulholland
G. W.
, and
Kashiwagi
T.
,
1994
, “
Simultaneous Optical Measurement of Soot Volume Fraction and Temperature in Premixed Flames
,”
Combust. Flame
, Vol.
99
, pp.
174
186
.
6.
Dalzell
W. H.
, and
Sarofim
A. F.
,
1969
, “
Optical Constants of Soot and Their Application to Heat Flux Calculations
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
91
, pp.
100
104
.
7.
Dobbins
R. A.
, and
Megaridis
C. M.
,
1991
, “
Absorption and Scattering of Light by Polydisperse Aggregates
,”
Appl. Optics
, Vol.
30
, pp.
4747
4754
.
8.
Dobbins
R. A.
,
Mulholland
G. W.
, and
Bryner
N. P.
,
1994
, “
Comparison of a Fractal Smoke Optics Model With Light Extinction Measurements
,”
Atmos. Environ.
, Vol.
28
, pp.
889
897
.
9.
Farias
T. L.
,
Carvalho
M. G.
,
Ku¨ylu¨
U¨. O¨.
, and
Faeth
G. M.
,
1995
, “
Computational Evaluation of Approximate Rayleigh-Debye-Gans/Fractal Aggregate Theory for the Absorption and Scattering Properties of Soot
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, pp.
152
159
.
10.
Felske
J. D.
, and
Ku
J. C.
,
1992
, “
A Technique for Determining the Spectral Refractive Indices, Size and Number Density of Soot Particles From Light Scattering and Spectral Extinction Measurements in Flames
,”
Combust. Flame
, Vol.
91
, pp.
1
20
.
11.
Felske
J. D.
,
Charalampopoulos
T. T.
, and
Hura
H.
,
1984
, “
Determination of the Refractive Indices of Soot Particles From the Reflectivities of Compressed Soot Pellets
,”
Combust. Sci. Tech.
, Vol.
37
, pp.
263
283
.
12.
Habib
Z. G.
, and
Vervisch
P.
,
1988
, “
On the Refractive Index of Soot at Flame Temperature
,”
Combust. Sci. Tech.
, Vol.
59
, pp.
261
274
.
13.
Ko¨ylu¨
U¨. O¨.
, and
Faeth
G. M.
,
1992
, “
Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times
,”
Combust. Flame
, Vol.
89
, pp.
140
156
.
14.
Ko¨ylu¨
U¨. O¨.
, and
Faeth
G. M.
,
1993
, “
Radiative Properties of Flame-Generated Soot
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
409
417
.
15.
Ko¨ylu¨
U¨. O¨.
, and
Faeth
G. M.
,
1994
a, “
Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
152
159
.
16.
Ko¨ylu¨
U¨. O¨.
, and
Faeth
G. M.
,
1994
b, “
Optical Properties of Soot in Buoyant Laminar Diffusion Flames
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
971
979
.
17.
Ko¨ylu¨
U¨. O¨.
,
Faeth
G. M.
,
Farias
T. L.
, and
Carvalho
M. G.
,
1995
, “
Fractal and Projected Structure Properties of Soot Aggregates
,”
Combust. Flame
, Vol.
100
, pp.
621
633
.
18.
Lee, S. C., and Tien, C. L., 1981, “Optical Constants of Soot in Hydrocarbon Flames,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1159–1166.
19.
Menna, P., and D’Alessio, A., 1982, “Light Scattering and Extinction Coefficients for Soot Forming Flames in the Wavelength Range From 200 nm to 600 nm,” Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1421–1428.
20.
Siddall, R. G., and McGrath, I. A., 1963, “The Emissivity of Luminous Flames,” Ninth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 102–110.
21.
Siegel, R., and Howell, J. R., 1981, Thermal Radiation Heat Transfer, Hemisphere, New York, pp. 658–669.
22.
Sivathanu
Y. R.
,
Gore
J. P.
,
Janssen
J. M.
, and
Senser
D. W.
,
1993
, “
A Study of In Situ Specific Absorption Coefficients of Soot Particles in Laminar Flat Flames
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
653
658
.
23.
Tien
C. L.
, and
Lee
S. C.
,
1982
, “
Flame Radiation
,”
Prog. Energy Combust. Sci.
, Vol.
8
, pp.
41
59
.
24.
Vaglieco
B. M.
,
Beretta
F.
, and
D’Alessio
A.
,
1990
, “
In Situ Evaluation of the Soot Refractive Index in the UV-Visible from the Measurements of the Scattering and Extinction Coefficients in Rich Flames
,”
Combust. Flame
, Vol.
79
, pp.
259
271
.
25.
Viskanta
R.
, and
Mengu¨c¸
M. P.
,
1987
, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
, Vol.
13
, pp.
97
160
.
This content is only available via PDF.
You do not currently have access to this content.