The two-dimensional heat transfer induced by free laminar convection in an enclosure is numerically investigated in this work. A constant wall heat flux is applied on the inner cylinder while the outer is maintained at an uniform temperature, the others walls being adiabatic. The influence of the modified Grashof number (102 ≤ Gr ≤ 106) and an aspect Fr on convective motion and heat transfer is examined. A comparison of the heat transfer between different fluids such as air, ammonia–liquid, and carbon dioxide–liquid is also displayed. Holographic interferometry is used to visualize the temperature field within the enclosure and to confirm the two-dimensional behavior of the convective flow. The results show that maximum heat transfer is found for Fr = 1, when the Grashof number is up to 103, and the conduction regime is reached for a modified Grashof number less than 103. On the other hand, the average Nusselt number increases with the Prandtl number, Fr = 1.

1.
Al-Ani
N.
, and
Nansteel
M. W.
,
1993
, “
Natural Convection in a Partial Sector-Shaped Enclosure: Experimental Results
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
133
139
.
2.
Bejan, A., 1984, Convection Heat Transfer, A Wiley-Interscience Publication, Wiley, New York.
3.
Carnahan, B., Luther, H. A., and Wilkes, J. O., 1969, Applied Numerical Methods, Wiley, New York.
4.
Castrejon
A.
, and
Spalding
D. B.
,
1988
, “
An Experimental and Theoretical Study of Transient Free-Convection Flow Between Horizontal Concentric Cylinders
,”
Int. J. Heat Mass Transfer
, Vol.
31
, No.
2
, pp.
273
284
.
5.
Chadwick
M. L.
,
Webb
B. W.
, and
Heaton
H. S.
,
1991
, “
Natural Convection From Two-Dimensional Discrete Heat Sources in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
, Vol.
34
, No.
7
, pp.
1679
1793
.
6.
Chuen-Yen, C., 1979, An Introduction to Computational Fluid Mechanics, Wiley, New York.
7.
David, R. C., and David, G. L., 1977, Heat Transfer Calculations Using Finite Difference Equations, Applied Sciences Publishers LTD, London.
8.
Euvrard, D., 1990, “Re´solution Nume´rique des Equations aux De´rive´es Partielles,” 2nd ed., Masson, Paris.
9.
Gourdin, A., and Boumahrat, M., 1983, Me´thodes Nume´riques Applique´es, Lavoisier TEC & DOC, Paris.
10.
Holman, J. P., 1985, Heat Transfer, 5th ed., McGraw-Hill, New York.
11.
Kublbeck
K.
,
Merker
G. P.
, and
Straub
J.
,
1980
, “
Advanced Numerical Computation of Two-Dimensional Time-Dependent Free Convection in Cavities
,”
Int. J. Heat Mass Transfer
, Vol.
23
, pp.
203
217
.
12.
Kuehn
T. H.
, and
Goldstein
R. J.
,
1976
a, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
, Vol.
74
, No.
4
, pp.
695
719
.
13.
Kuehn
T. H.
, and
Goldstein
R. J.
,
1976
b, “
Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders
,”
Int. J. Heat Mass Transfer
, Vol.
19
, pp.
1127
1134
.
14.
Kwon
S. S.
,
Kuehn
T. H.
, and
Lee
T. S.
,
1982
, “
Natural Convection in the Annulus Between Horizontal Circular Cylinders With Three Axial Spacers
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
104
, pp.
118
124
.
15.
Lavrentiev, M., and Chabat, B., 1972, Me´thodes de la the´orie des fonctions d’une variable complexe, Editions MIR, Moscow.
16.
Mack
R.
, and
Bishop
E. H.
,
1986
, “
Natural Convection Between Horizontal Concentric Cylinders for Low Rayleigh Numbers
,”
Quart. Journ. Mech. and Applied Math.
, Vol.
21
, No.
2
, pp.
???–???
???–???
.
17.
Nogotov, E. F., 1978, Applications of Numerical Heat Transfer, McGraw-Hill, New York.
18.
Peaceman
D. W.
, and
Rachford
H. H.
,
1955
, “
The Numerical Solution of Parabolic and Elliptic Differential Equations
,”
J. Soc. Ind. Appl. Math.
, Vol.
3
, No.
1
, pp.
28
41
.
19.
Ranganathan
K.
,
1988
, “
Study of Natural Convection in Horizontal Annuli
,”
Int. J. Heat Mass Transfer
, Vol.
31
, No.
6
, pp.
1137
1148
.
20.
Rao
Y. F.
,
Miki
Y.
,
Fukuda
K.
,
Tanaka
Y.
, and
Hasegawa
S.
,
1985
, “
Flow Patterns of Natural Convection in Horizontal Cylindrical Annuli
,”
Int. J. Heat Mass Transfer
, Vol.
28
, pp.
705
714
.
21.
Roache, P. J., 1982, Computational Fluid Dynamics, Hermosa Publ., Albuquerque, NM.
22.
Samuels
M. R.
, and
Churchill
S. W.
,
1967
, “
Stability of Fluid in a Rectangular Region Heated From Below
,”
AIChE J.
, Vol.
13
, No.
1
, pp.
77
85
.
23.
Sarr, J., 1993, “Contibution a` l’Etude de la Convection Naturelle dans une Enceinte Ferme´e Limite´e par deux Cylindres Concentriques Horizontaux et deux Plans Diame´traux,” The`se de Doctorat, Universite´ de Perpignan, France.
24.
Shilston
M. J.
, and
Probert
S. D.
,
1978
, “
Effects of Horizontal and Vertical Spacers on the Heat Transfer Across a Horizontal, Annular, Air-Filled Cavity
,”
Applied Energy
, Vol.
4
, pp.
21
27
.
25.
Torrance
K. E.
,
1968
, “
Comparison of Finite-Difference Computations of Natural Convection
,”
Journal of Research of the National Bureau of Standards—B. Mathematical Sciences
, Vol.
72B
, No.
4
, Oct.-Dec., pp.
281
300
.
26.
Tsui
Y. T.
, and
Tremblay
B.
,
1984
, “
On Transient Natural Convection Heat Transfer in the Annulus Between Concentric, Horizontal Cylinders With Isothermal Surfaces
,”
Int. J. Heat Mass Transfer
, Vol.
27
, No.
1
, pp.
103
111
.
27.
Vafai
K.
, and
Javad
E.
,
1991
, “
An Investigation of Transient Three-Dimensional Buoyancy-Driven Flow and Heat Transfer in a Closed Horizontal Annulus
,”
Int. J. Heat Mass Transfer
, Vol.
34
, No.
10
, pp.
2555
2570
.
28.
Wilkes
J. O.
, and
Churchill
S. W.
,
1966
, “
The Finite-Difference Computation of Natural Convection in a Rectangular Enclosure
,”
AIChE J.
, Vol.
12
, No.
1
, pp.
161
166
.
This content is only available via PDF.
You do not currently have access to this content.