This paper presents the results of an extension of an experimental and theoretical investigation of an unstable flow phenomenon that leads to self-sustained limit-cycle-type oscillations of large amplitude, and which, under certain conditions, can involve flow reversals. The influence of two-phase pressure drop is examined and shown to have a stabilizing effect on the instability. Inclusion of the two-phase pressure drop as part of the downstream throttling allows the utilization of a previously developed linearized analysis, based on the system mean void fraction model, to predict successfully the experimentally observed stability boundary.

This content is only available via PDF.
You do not currently have access to this content.