This paper analyses both theoretically and experimentally the problem of film boiling from a body embedded in a liquid-saturated porous medium. Two body geometries are investigated thoroughly: a horizontal cylinder and a sphere. The theoretical model relies on the Brinkman-extended flow model to describe the flow field inside the thin vapor layer occupying the neighborhood near the heated surface. The theoretical model also includes an improved formulation of the effective conductivity in the vicinity of the heater as a function of the vapor layer thickness and the geometry of the porous medium material. Solutions are obtained for the vapor layer thickness and the local Nusselt number as a function of angular position. Numerical solutions are also obtained for the overall heat transfer rates from the surface to the fluid for a given vapor superheat. Experimental data for a 12.70 mm stainless steel cylindrical heater embedded in a 3-mm glass particle porous medium were obtained under steady—state operation. The experimental data obtained are compared with the theoretical analysis. The comparison shows that there is a good agreement between theory and experiments. The theoretical model is also compared with the experimental data obtained by other investigators for a spherical geometry. Excellent results are obtained in such comparison.

This content is only available via PDF.
You do not currently have access to this content.