Abstract

OH planar laser induced fluorescence (OH-PLIF) and particle image velocimetry (PIV) are employed to analyze the structure of hydrogen/air flames stabilized by a dual swirl injection system under globally lean and atmospheric conditions with preheat air temperature varied from ambient up to 673 K. The flames exhibit two distinct reaction branches. The first, located in the central recirculation zone (CRZ), is a diffusion-controlled reaction layer characterized by a relatively large thickness associated with low strain rates. The second branch, stabilized in the shear layer of the swirling jet, is strongly influenced by large coherent structures. Depending on operating conditions, this front may adopt either the form of a fully diffusive strained reaction layer anchored to the hydrogen injector lip or a lifted diffusion front with a leading-edge flame evolving into a partially premixed flame at high air injection velocities. Flue gas analysis indicates NOx emission levels, typically below 10 ppm at 15% O2, for sufficiently large air injection velocities. Air preheating barely increases NOx emissions at lean operating conditions. The injector operational range is constrained only by the ultralean blowout limit reached for global equivalence ratios below 0.02. Furthermore, it demonstrates remarkable resilience to large and rapid drop in fuel flow rate. However, combustion efficiency drops close to the lean blowout (LBO) limit due to intermittent fragmentation of the flame wings that progresses further upstream as the equivalence ratio drops. The results demonstrate that fragmentation arises from the combined effects of a temperature drop in the central recirculation zone and the flame wings being exposed to high shear stress. Additionally, it is shown that combustion efficiency under ultralean conditions improves significantly with an increase in air preheat temperature.

References

1.
Du Toit
,
M. H.
,
Avdeenkov
,
A. V.
, and
Bessarabov
,
D.
,
2018
, “
Reviewing H2 Combustion: A Case Study for Non-Fuel-Cell Power Systems and Safety in Passive Autocatalytic Recombiners
,”
Energy Fuels
,
32
(
6
), pp.
6401
6422
.10.1021/acs.energyfuels.8b00724
2.
Richard
,
S.
,
Viguier
,
C.
,
Marragou
,
S.
, and
Schuller
,
T.
,
2023
, “
Device for Injecting Dihydrogen and Air
,”
Institut National de la Propriété Industrielle
, France, WO Patent No. WO2023057722A1.
3.
Marragou
,
S.
,
Magnes
,
H.
,
Poinsot
,
T.
,
Selle
,
L.
, and
Schuller
,
T.
,
2022
, “
Stabilization Regimes and Pollutant Emissions From a Dual Fuel CH4/H2 and Dual Swirl Low NOx Burner
,”
Int. J. Hydrogen Energy
,
47
(
44
), pp.
19275
19288
.10.1016/j.ijhydene.2022.04.033
4.
Degenève
,
A.
,
Mirat
,
C.
,
Caudal
,
J.
,
Vicquelin
,
R.
, and
Schuller
,
T.
,
2019
, “
Effects of Swirl on the Stabilization of Non-Premixed Oxygen-Enriched Flames Above Coaxial Injectors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121018
.10.1115/1.4045024
5.
Leroy
,
M.
,
Mirat
,
C.
,
Renaud
,
A.
, and
Vicquelin
,
R.
,
2023
, “
Stabilization of Low-NOx Hydrogen Flames on a Dual-Swirl Coaxial Injector
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021021
.10.1115/1.4055711
6.
Magnes
,
H.
,
Marragou
,
S.
,
Aniello
,
A.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2024
, “
Impact of Preheating on Flame Stabilization and NOx Emissions From a Dual Swirl Hydrogen Injector
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051004
.10.1115/1.4063719
7.
Aniello
,
A.
,
Laera
,
D.
,
Marragou
,
S.
,
Magnes
,
H.
,
Selle
,
L.
,
Schuller
,
T.
, and
Poinsot
,
T.
,
2023
, “
Experimental and Numerical Investigation of Two Flame Stabilization Regimes Observed in a Dual Swirl H2-Air Coaxial Injector
,”
Combust. Flame
,
249
, p.
112595
.10.1016/j.combustflame.2022.112595
8.
Marragou
,
S.
,
Magnes
,
H.
,
Aniello
,
A.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2023
, “
Experimental Analysis and Theoretical Lift-Off Criterion for H2/Air Flames Stabilized on a Dual Swirl Injector
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4345
4354
.10.1016/j.proci.2022.07.255
9.
Marragou
,
S.
,
Magnes
,
H.
,
Aniello
,
A.
,
Guiberti
,
T.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2023
, “
Modeling of H2/Air Flame Stabilization Regime Above Coaxial Dual Swirl Injectors
,”
Combust. Flame
,
255
, p.
112908
.10.1016/j.combustflame.2023.112908
10.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.10.1016/j.pecs.2008.07.003
11.
Nair
,
S.
, and
Lieuwen
,
T.
,
2007
, “
Near-Blowoff Dynamics of a Bluff-Body Stabilized Flame
,”
J. Propul. Power
,
23
(
2
), pp.
421
427
.10.2514/1.24650
12.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2010
, “
Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames
,”
Combust. Flame
,
157
(
4
), pp.
790
802
.10.1016/j.combustflame.2009.10.020
13.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
.10.1016/j.proci.2010.06.103
14.
Kariuki
,
J.
,
Dawson
,
J. R.
, and
Mastorakos
,
E.
,
2012
, “
Measurements in Turbulent Premixed Bluff Body Flames Close to Blow-Off
,”
Combust. Flame
,
159
(
8
), pp.
2589
2607
.10.1016/j.combustflame.2012.01.005
15.
Zhang
,
W.
,
Wang
,
J.
,
Mao
,
R.
,
Lin
,
W.
,
Lin
,
B.
,
Wu
,
Y.
,
Zhang
,
M.
, and
Huang
,
Z.
,
2021
, “
Experimental Study of Compact Swirl Flames With Lean Premixed CH4/H2/Air Mixtures at Stable and Near Blow-Off Conditions
,”
Exp. Therm. Fluid Sci.
,
122
, p.
110294
.10.1016/j.expthermflusci.2020.110294
16.
Ma
,
K.
,
Yu
,
X.
,
Zhao
,
X.
,
Li
,
X.
,
Li
,
S.
,
Zhao
,
D.
, and
Shi
,
B.
,
2020
, “
Response of Lean Premixed Swirl Tubular Flame to Acoustic Perturbations
,”
Exp. Therm. Fluid Sci.
,
119
, p.
110199
.10.1016/j.expthermflusci.2020.110199
17.
Dawson
,
J.
,
Gordon
,
R.
,
Kariuki
,
J.
,
Mastorakos
,
E.
,
Masri
,
A.
, and
Juddoo
,
M.
,
2011
, “
Visualization of Blow-Off Events in Bluff-Body Stabilized Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1559
1566
.10.1016/j.proci.2010.05.044
18.
Schefer
,
R. W.
,
Wicksall
,
D.
, and
Agrawal
,
A. K.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
19.
Strakey
,
P.
,
Sidwell
,
T.
, and
Ontko
,
J.
,
2007
, “
Investigation of the Effects of Hydrogen Addition on Lean Extinction in a Swirl Stabilized Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3173
3180
.10.1016/j.proci.2006.07.077
20.
Zhang
,
Q.
,
Noble
,
D. R.
,
Shanbhogue
,
S. J.
, and
Lieuwen
,
T.
,
2007
, “
Impacts of Hydrogen Addition on Near-Lean Blowout Dynamics in a Swirling Combustor
,”
ASME
Paper No. GT2007-27308.10.1115/GT2007-27308
21.
Kurata
,
O.
,
Iki
,
N.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Performances and Emission Characteristics of NH3/Air and NH3/CH4/Air Combustion Gas-Turbine Power Generations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3351
3359
.10.1016/j.proci.2016.07.088
22.
Johnson
,
M.
, and
Kostiuk
,
L.
,
2000
, “
Efficiencies of Low-Momentum Jet Diffusion Flames in Crosswinds
,”
Combust. Flame
,
123
(
1–2
), pp.
189
200
.10.1016/S0010-2180(00)00151-6
23.
Shadidi
,
B.
,
Najafi
,
G.
, and
Yusaf
,
T.
,
2021
, “
A Review of Hydrogen as a Fuel in Internal Combustion Engines
,”
Energies
,
14
(
19
), p.
6209
.10.3390/en14196209
24.
Tahsini
,
A.
, and
Mousavi
,
S. T.
,
2015
, “
Investigating the Supersonic Combustion Efficiency for the Jet-in-Cross-Flow
,”
Int. J. Hydrogen Energy
,
40
(
7
), pp.
3091
3097
.10.1016/j.ijhydene.2014.12.124
25.
Wan
,
J.
,
Fan
,
A.
,
Maruta
,
K.
,
Yao
,
H.
, and
Liu
,
W.
,
2012
, “
Experimental and Numerical Investigation on Combustion Characteristics of Premixed Hydrogen/Air Flame in a Micro-Combustor With a Bluff Body
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19190
19197
.10.1016/j.ijhydene.2012.09.154
26.
Ju
,
Y.
, and
Maruta
,
K.
,
2011
, “
Microscale Combustion: Technology Development and Fundamental Research
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
669
715
.10.1016/j.pecs.2011.03.001
27.
Zhao
,
M.
,
Liu
,
L.
, and
Fan
,
A.
,
2020
, “
Comparison of Combustion Efficiency of Micro Hydrogen Jet Flames Confined in Cylindrical Tubes of Different Diameters
,”
Chem. Eng. Process.-Process Intensif.
,
153
, p.
108000
.10.1016/j.cep.2020.108000
28.
Yan
,
Y.
,
He
,
Z.
,
Xu
,
Q.
,
Zhang
,
L.
,
Li
,
L.
,
Yang
,
Z.
, and
Ran
,
J.
,
2019
, “
Numerical Study on Premixed Hydrogen/Air Combustion Characteristics in Micro-Combustor With Slits on Both Sides of the Bluff Body
,”
Int. J. Hydrogen Energy
,
44
(
3
), pp.
1998
2012
.10.1016/j.ijhydene.2018.11.128
29.
Wan
,
J.
,
Fan
,
A.
,
Yao
,
H.
, and
Liu
,
W.
,
2015
, “
Effect of Thermal Conductivity of Solid Wall on Combustion Efficiency of a Micro-Combustor With Cavities
,”
Energy Convers. Manage.
,
96
, pp.
605
612
.10.1016/j.enconman.2015.03.030
30.
Brohez
,
S.
,
Delvosalle
,
C.
, and
Marlair
,
G.
,
2004
, “
A Two-Thermocouples Probe for Radiation Corrections of Measured Temperatures in Compartment Fires
,”
Fire Saf. J.
,
39
(
5
), pp.
399
411
.10.1016/j.firesaf.2004.03.002
31.
Sung
,
C.
,
Liu
,
J.
, and
Law
,
C. K.
,
1995
, “
Structural Response of Counterflow Diffusion Flames to Strain Rate Variations
,”
Combust. Flame
,
102
(
4
), pp.
481
492
.10.1016/0010-2180(95)00041-4
32.
Pons
,
L.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2008
, “
Pressure Effects on Nonpremixed Strained Flames
,”
Combust. Flame
,
152
(
1–2
), pp.
218
229
.10.1016/j.combustflame.2007.07.006
You do not currently have access to this content.