Abstract

The effect of the operating conditions on the vibration amplitude trends of an isolated low-pressure turbine rotor is described. The study utilizes an analytical model correlating the aerodynamic and dry-friction work introduced in Part I of the paper. In this Part II, the analysis has been extended to incorporate the influence of rotational speed. The force distribution and the penetration length of the fir-tree contact surfaces are key parameters within the heuristic microslip model used to characterize the friction forces. These parameters change with rotational speed, consequently influencing the dry-friction work involved in the process. The model is closed with numerical simulations to compute the aerodynamic damping, and it is compared against experimental data gathered from the experimental campaign detailed in Part I. The results demonstrate a significant impact of the shaft speed on flutter vibration amplitude. The vibration amplitude has been observed to reach a maximum near the on-design conditions. The analytical model can correctly capture this trend, indicating that the essential physics is retained in it. Nonlinear friction, mistuning, and three-dimensional unsteady aerodynamics have shown to play a predominant role to explain the change of vibration amplitude with the shaft speed.

References

1.
Marshall
,
J.
, and
Imregun
,
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluids Struct.
,
10
(
3
), pp.
237
267
.10.1006/jfls.1996.0015
2.
Hall
,
K.
,
Kielb
,
R.
,
Ekici
,
K.
,
Thomas
,
J. P.
, and
Clark
,
W.
,
2005
, “
Recent Advancements in Turbomachinery Aeroelastic Analysis
,”
AIAA
Paper No. 2005-14.10.2514/6.2005-14
3.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.10.1115/1.2817053
4.
Kielb
,
R. E.
,
Barte
,
J.
,
Chernysheva
,
O.
, and
Fransson
,
T.
,
2003
, “
Flutter of Low Pressure Turbine Blades With Cyclic Symmetric Modes
,”
ASME
Paper No. GT2003-38694.10.1115/GT2003-38694
5.
Waite
,
J.
, and
Kielb
,
R.
,
2015
, “
Physical Understanding and Sensitivities of Low Pressure Turbine Flutter
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012502
.10.1115/1.4028207
6.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils - Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
.10.1115/1.4031776
7.
Corral
,
R.
, and
Gallardo
,
J. M.
,
2006
, “
A Methodology for the Vibration Amplitude Prediction of Self-Excited Rotors Based on Dimensional Analysis
,”
ASME
Paper No. 2006-GT-90668.10.1115/2006-GT-90668
8.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
9.
Corral
,
R.
, and
Gallardo
,
J.
,
2008
, “
Verification of the Vibration Amplitude Prediction of Self-Excited Lpt Rotor Blades Using a Fully Coupled Time-Domain Non-Linear Method and Experimental Data
,”
ASME
Paper No. 2008-GT-51416.10.1115/2008-GT-51416
10.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Martel
,
C.
,
2009
, “
A Conceptual Flutter Analysis of a Packet of Vanes Using a Mass-Spring Model
,”
ASME J. Turbomach.
,
131
(
2
), p.
021016
.10.1115/1.2952364
11.
Petrov
,
E. P.
,
2012
, “
Analysis of Flutter-Induced Limit Cycle Oscillations in Gas-Turbine Structures With Friction, Gap, and Other Nonlinear Contact Interfaces
,”
ASME J. Turbomach.
,
134
(
6
), p.
061018
.10.1115/1.4006292
12.
Corral
,
R.
, and
Gallardo
,
J.
,
2014
, “
Nonlinear Dynamics of Bladed Disks With Multiple Unstable Modes
,”
AIAA J.
,
52
(
6
), pp.
1124
1132
.10.2514/1.J051812
13.
Krack
,
M.
,
Scheidt
,
L.
, and
Wallaschek
,
J.
,
2017
, “
On the Interaction of Multiple Traveling Wave Modes in the Flutter Vibrations of Friction - Damped Tuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
042501
.10.1115/1.4034650
14.
Rodríguez
,
S.
, and
Martel
,
C.
,
2021
, “
Analysis of Experimental Results of Turbomachinery Flutter Using an Asymptotic Reduced Order Model
,”
J. Sound Vib.
,
509
, p.
116225
.10.1016/j.jsv.2021.116225
15.
Berthold
,
C.
,
Gross
,
J.
,
Frey
,
C.
, and
Krack
,
M.
,
2020
, “
Analysis of Friction-Saturated Flutter Vibrations With a Fully Coupled Frequency Domain Method
,”
ASME J. Eng. Gas Turbines Power
,
142
(
11
), p.
111007
.10.1115/1.4048650
16.
Rodríguez-Blanco
,
S.
,
González-Monge
,
J.
, and
Martel
,
C.
,
2023
, “
Numerical Investigation of Friction Induced Interaction of Flutter Modes in a Realistic LPT Rotor
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111021
.10.1115/1.4063374
17.
Ombret
,
N.
,
Daon
,
R.
,
Dugeai
,
A.
,
Thouverez
,
F.
, and
Blanc
,
L.
,
2023
, “
A Frequency-Time Partitioned Approach for Computing Fan Blade Flutter Induced Limit Cycle Oscillations With Nonlinear Friction on Contact Interfaces
,”
ASME
Paper No. GT2023-102568.10.1115/GT2023-102568
18.
Vogt
,
D.
, and
Fransson
,
T.
,
2007
, “
Experimental Investigation of Mode Shape Sensitivity of an Oscillating Low-Pressure Turbine Cascade at Design and Off-Design Conditions
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
530
541
.10.1115/1.2436567
19.
Bölcs
,
A.
, and
Fransson
,
T. H.
,
1986
, “
Aeroelasticity in Turbomachines: Comparision of Theoretical and Experimental Cascade Results
,” Communication de
Laboratoire de Thermique Appliquee et de Turbomachines, EPFL
, Lausanne, Switzerland, Report.https://apps.dtic.mil/sti/citations/ADA181763#:~:text=The%20aeroelastician%20needs%20reliable%2C%20efficient,well%20documented%20experimental%20test%20cases
20.
Fransson
,
T. H.
, and
Verdon
,
J. M.
,
1992
, “
Updated Report on Standard Configurations for Unsteady Flow
,” International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of turbomachines (ISUAAAT), Report.
21.
Corral
,
R.
, and
Gisbert
,
F.
,
2003
, “
A Numerical Investigation on the Influence of Lateral Boundaries in Linear Vibrating Cascades
,”
ASME J. Turbomach.
,
125
(
3
), pp.
433
441
.10.1115/1.1575255
22.
Corral
,
R.
,
Beloki
,
J.
,
Calza
,
P.
, and
Elliot
,
R.
,
2019
, “
Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig
,”
AIAA J.
,
57
(
2
), pp.
782
795
.10.2514/1.J056943
23.
Gallardo
,
J.
,
Oscar
,
B.
,
Hernandezndez
,
J.
,
Garcia
,
G.
,
Gallego
,
J.
,
Knappett
,
D.
,
Kharyton
,
V.
,
Wurl
,
M.
, and
Corral
,
R.
,
2024
, “
Experimental Research Into Aeroelastic Phenomena in Turbine Rotor Blades Inside Arias eu Project
,”
ASME J. Turbomach.
,
146
(
7
), p.
071009
.10.1115/1.4065621
24.
Escudero
,
A.
,
Rodriguez-Blanco
,
S.
, and
Corral
,
R.
,
2024
, “
Validation of a Methodology to Assess the Flutter Limit Cycle Oscillation Amplitude of Low-Pressure Turbine Bladed-Disks - Part I: Mach Number Effects
,”
ASME J. Eng. Gas Turbines Power
, 147(6), p. 061001.10.1115/1.4066587
25.
Panovsky
,
J.
, and
Kielb
,
R.
,
2000
, “
A Design Method to Prevent Low Pressure Turbine Blade Flutter
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
89
98
.10.1115/1.483180
26.
Corral
,
R.
,
Escribano
,
A.
,
Gisbert
,
F.
,
Serrano
,
A.
, and
Vasco
,
C.
,
2003
, “
Validation of a Linear Multigrid Accelerated Unstructured Navier-Stokes Solver for the Computation of Turbine Blades on Hybrid Grids
,”
AIAA
Paper No. 2003-3326.10.2514/6.2003-3326
27.
Burgos
,
M.
,
Corral
,
R.
, and
Contreras
,
J.
,
2011
, “
Efficient Edge Based Rotor/Stator Interaction Method
,”
AIAA J.
,
49
(
1
), pp.
19
31
.10.2514/1.44512
28.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Execution of a Parallel Edged-Based Navier-Stokes Solver on Graphics Processing Units
,”
Int. J. Comp. Fluid Dyn.
,
31
(
2
), pp.
1
16
.10.1080/10618562.2017.1294686
29.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
Physics of Vibrating Turbine Airfoils at Low Reduced Frequency
,”
AIAA J. Propul. Power
,
32
(
2
), pp.
325
336
.10.2514/1.B35572
30.
Vega
,
A.
, and
Corral
,
R.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating airfoils - Part II: Numerical Experiments
,”
ASME J. Turbomach.
,
138
(
2
), p.
021005
.10.1115/1.4031777
31.
Jaiswal
,
B.
, and
Bhave
,
S.
,
1994
, “
Experimental Evaluation of Damping in a Bladed Disk Model
,”
J. Sound Vib.
,
177
(
1
), pp.
111
120
.10.1006/jsvi.1994.1419
32.
Petrov
,
E.
, and
Ewins
,
D.
,
2004
, “
State-of-the-Art Dynamic Analysis for Non-Linear Gas Turbine Structures
,”
Proc. Inst. Mech. Eng., Part G
,
218
(
3
), pp.
199
211
.10.1243/0954410041872906
33.
Petrov
,
E.
, and
Ewins
,
D.
,
2004
, “
Generic Friction Models for Time-Domain Vibration Analysis of Bladed Disks
,”
ASME J. Turbomach.
,
126
(
1
), pp.
184
192
.10.1115/1.1644557
34.
Olofsson
,
U.
,
1995
, “
Cyclic Micro-Slip Under Unlubricated Conditions
,”
Tribol. Int.
,
28
(
4
), pp.
207
217
.10.1016/0301-679X(94)00001-7
35.
Sellgren
,
U.
, and
Olofsson
,
U.
,
1999
, “
Application of a Constitutive Model for Micro-Slip in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
170
(
1–2
), pp.
65
77
.10.1016/S0045-7825(98)00189-3
36.
Laxalde
,
D.
,
Salles
,
L.
,
Blanc
,
L.
, and
Thouverez
,
F.
,
2008
, “
Non-Linear Modal Analysis for Bladed Disks With Friction Contact Interfaces
,”
ASME
Paper No. 2008-GT-50860.10.1115/2008-GT-50860
37.
Laxalde
,
D.
, and
Thouverez
,
F.
,
2009
, “
Complex Non-Linear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings With Friction Interfaces
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1009
1025
.10.1016/j.jsv.2008.11.044
38.
Koscso
,
A.
, and
Petrov
,
E.
,
2020
, “
Blade Root Joint Modelling and Analysis of Effects of Their Geometry Variability on the Nonlinear Forced Response of Tuned and Mistuned Bladed Disks
,”
ASME
Paper No. GT2020-15225.10.1115/GT2020-15225
39.
Pourkiaee
,
S.
,
Zucca
,
S.
, and
Parker
,
R.
,
2022
, “
Relative Cyclic Component Mode Synthesis: A Reduced Order Modeling Approach for Mistuned Bladed Disks With Friction Interfaces
,”
Mech. Syst. Signal Process.
,
163
, p.
108197
.10.1016/j.ymssp.2021.108197
40.
Kielb
,
R.
, and
Kaza
,
K.
,
1984
, “
Effects of Structural Coupling on Mistuned Cascade Flutter and Response
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
17
24
.10.1115/1.3239532
41.
Crawley
,
E. F.
, and
Hall
,
K. C.
,
1985
, “
Optimization and Mechanisms of Mistuning in Cascades
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
418
426
.10.1115/1.3239742
42.
Martel
,
C.
,
Corral
,
R.
, and
Llorens
,
J. M.
,
2008
, “
Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning
,”
ASME J. Turbomach.
,
130
(
1
), p.
011006
.10.1115/1.2720503
43.
Corral
,
R.
,
Khemiri
,
O.
, and
Martel
,
C.
,
2018
, “
Design of Mistuning Patterns to Control the Vibration Amplitude of Unstable Rotor Blades
,”
Aerosp. Sci. Technol.
,
80
, pp.
20
28
.10.1016/j.ast.2018.06.034
44.
Southwell
,
R.
, and
Gough
,
F.
,
1921
, “
On the Free Transverse Vibrations of Airscrew Blades
,”
British ARC Reports and Memoranda
, H.M. Stationery Office, London, UK, Report No. 766.
45.
Corral
,
R.
, and
Vega
,
A.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency. Part I: Theoretical Support
,”
ASME J. Turbomach.
,
139
(
3
), p.
031009
.10.1115/1.4034976
46.
Vega
,
A.
, and
Corral
,
R.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency. Part II: Numerical Verification
,”
ASME J. Turbomach.
,
139
(
3
), p.
031010
.10.1115/1.4034978
47.
Avallone
,
E.
,
Baumeister
,
T.
, and
Sadegh
,
A.
,
2007
,
Marks’ Standard Handbook for Mechanical Engineers
,
McGraw-Hill Education
, New York.
You do not currently have access to this content.