Abstract

This paper presents a methodology to estimate the vibration amplitude of fluttering low-pressure turbine (LPT) blades saturated due to friction effects. The study utilizes an analytical model that balances aerodynamic work and dry-friction work. The analytical predictions are compared against experimental results to validate the model. The first part of this paper focuses on the influence of the Mach number on the work balance between aerodynamic and mechanical components. It is observed that the vibration amplitude of low-pressure turbine rotor blades notably increases with higher Mach numbers. In addition, numerical simulations are employed to assess the influence of the Mach number on the critical damping ratio. The results demonstrate that an appropriate scaling of the critical damping ratio with the exit Mach number collapses all the damping versus interblade phase angle curves into a single curve. This finding validates the scaling of the aerodynamic damping for different pressure ratios. Unsteady pressure measurements were acquired, carefully postprocessed to extract their flutter-induced peak components, and presented in a nodal diameter (ND) by nodal diameter basis. The postprocessed data were then used to characterize the vibration amplitude observed in the experiments. The trends of the measured unsteady pressure on the casing of a rotating rig and the proposed model with the Mach number for different shaft speeds are in good agreement. The vibration amplitude and the mean unsteady pressure increase with the Mach number and exhibit a maximum with the shaft speed.

References

1.
Panovsky
,
J.
, and
Kielb
,
R.
,
2000
, “
A Design Method to Prevent Low Pressure Turbine Blade Flutter
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
89
98
.10.1115/1.483180
2.
Kielb
,
R. E.
,
Barte
,
J.
,
Chernysheva
,
O.
, and
Fransson
,
T.
,
2003
, “
Flutter of Low Pressure Turbine Blades With Cyclic Symmetric Modes
,”
ASME
Paper No. GT2003-38694.10.1115/GT2003-38694
3.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
4.
Sinha
,
A.
, and
Griffin
,
J. H.
,
1983
, “
Friction Damping of Flutter in Gas Turbine Engine Airfoils
,”
AIAA J. Aircr.
,
20
(
4
), pp.
372
376
.10.2514/3.44878
5.
Sinha
,
A.
, and
Griffin
,
J. H.
,
1985
, “
Effects of Friction Dampers on Aerodynamically Unstable Rotor Stages
,”
AIAA J.
,
23
(
2
), pp.
262
270
.10.2514/3.8904
6.
Petrov
,
E. P.
,
2012
, “
Analysis of Flutter-Induced Limit Cycle Oscillations in Gas-Turbine Structures With Friction, Gap, and Other Nonlinear Contact Interfaces
,”
ASME J. Turbomach.
,
134
(
6
), p.
061018
.10.1115/1.4006292
7.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
J. Sound Vib.
,
436
, pp.
327
340
.10.1016/j.jsv.2018.08.014
8.
Berthold
,
C.
,
Gross
,
J.
,
Frey
,
C.
, and
Krack
,
M.
,
2020
, “
Analysis of Friction-Saturated Flutter Vibrations With a Fully Coupled Frequency Domain Method
,”
ASME J. Eng. Gas Turbines Power
,
142
(
11
), p.
111007
.10.1115/1.4048650
9.
Rodríguez-Blanco
,
S.
,
González-Monge
,
J.
, and
Martel
,
C.
,
2023
, “
Numerical Investigation of Friction Induced Interaction of Flutter Modes in a Realistic LPT Rotor
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111021
.10.1115/1.4063374
10.
Corral
,
R.
, and
Gallardo
,
J.
,
2014
, “
Nonlinear Dynamics of Bladed Disks With Multiple Unstable Modes
,”
AIAA J.
,
52
(
6
), pp.
1124
1132
.10.2514/1.J051812
11.
Rodríguez
,
S.
, and
Martel
,
C.
,
2021
, “
Analysis of Experimental Results of Turbomachinery Flutter Using an Asymptotic Reduced Order Model
,”
J. Sound Vib.
,
509
, p.
116225
.10.1016/j.jsv.2021.116225
12.
Corral
,
R.
, and
Gallardo
,
J. M.
,
2006
, “
A Methodology for the Vibration Amplitude Prediction of Self-Excited Rotors Based on Dimensional Analysis
,”
ASME
Paper No. 2006-GT-90668.10.1115/2006-GT-90668
13.
Corral
,
R.
, and
Gallardo
,
J.
,
2008
, “
Verification of the Vibration Amplitude Prediction of Self-Excited LPT Rotor Blades Using a Fully Coupled Time-Domain Non-Linear Method and Experimental Data
,”
ASME
Paper No. 2008-GT-51416.10.1115/2008-GT-51416
14.
Groth
,
P.
,
Martensson
,
H.
, and
Andersson
,
C.
,
2010
, “
Design and Experimental Verification of Mistuning of a Supersonic Turbine Blisk
,”
ASME J. Turbomach.
,
132
(
1
), p.
011012
.10.1115/1.3072492
15.
Miura
,
T.
, and
Sakai
,
N.
,
2019
, “
Numerical and Experimental Studies of Labyrinth Seal Aeroelastic Instability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111005
.10.1115/1.4044353
16.
Corral
,
R.
,
Beloki
,
J.
,
Calza
,
P.
, and
Elliot
,
R.
,
2019
, “
Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig
,”
AIAA J.
,
57
(
2
), pp.
782
795
.10.2514/1.J056943
17.
Gallardo
,
J.
,
Oscar
,
B.
,
Hernandezndez
,
J.
,
Garcia
,
G.
,
Gallego
,
J.
,
Knappett
,
D.
,
Kharyton
,
V.
,
Wurl
,
M.
, and
Corral
,
R.
,
2024
, “
Experimental Research Into Aeroelastic Phenomena in Turbine Rotor Blades Inside ARIAS EU Project
,”
ASME J. Turbomach.
,
146
(
7
), p.
071009
.10.1115/1.4065621
18.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
(
3
), pp.
327
344
.10.1115/1.4010702
19.
Corral
,
R.
,
Escribano
,
A.
,
Gisbert
,
F.
,
Serrano
,
A.
, and
Vasco
,
C.
,
2003
, “
Validation of a Linear Multigrid Accelerated Unstructured Navier–Stokes Solver for the Computation of Turbine Blades on Hybrid Grids
,”
AIAA
Paper No. 2003-3326.10.2514/6.2003-3326
20.
Burgos
,
M.
,
Corral
,
R.
, and
Contreras
,
J.
,
2011
, “
Efficient Edge Based Rotor/Stator Interaction Method
,”
AIAA J.
,
49
(
1
), pp.
19
31
.10.2514/1.44512
21.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Execution of a Parallel Edged-Based Navier–Stokes Solver on Graphics Processing Units
,”
Int. J. Comp. Fluid Dyn.
,
31
(
2
), pp.
1
16
.10.1080/10618562.2017.1294686
22.
Ombret
,
N.
,
Daon
,
R.
,
Dugeai
,
A.
,
Thouverez
,
F.
, and
Blanc
,
L.
,
2023
, “
A Frequency-Time Partitioned Approach for Computing Fan Blade Flutter Induced Limit Cycle Oscillations With Nonlinear Friction on Contact Interfaces
,”
ASME
Paper No. GT2023-102568.10.1115/GT2023-102568
23.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
Physics of Vibrating Turbine Airfoils at Low Reduced Frequency
,”
AIAA J. Propul. Power
,
32
(
2
), pp.
325
336
.10.2514/1.B35572
24.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils - Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
.10.1115/1.4031776
25.
Vega
,
A.
, and
Corral
,
R.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating airfoils - Part II: Numerical Experiments
,”
ASME J. Turbomach.
,
138
(
2
), p.
021005
.10.1115/1.4031777
26.
Corral
,
R.
, and
Vega
,
A.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency. Part I: Theoretical Support
,”
ASME J. Turbomach.
,
139
(
3
), p.
0310009
.10.1115/1.4034976
27.
Vega
,
A.
, and
Corral
,
R.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency. Part II: Numerical Verification
,”
ASME J. Turbomach.
,
139
(
3
), p.
031010
.10.1115/1.4034978
28.
Olofsson
,
U.
,
1995
, “
Cyclic Micro-Slip Under Unlubricated Conditions
,”
Tribol. Int.
,
28
(
4
), pp.
207
217
.10.1016/0301-679X(94)00001-7
29.
Sellgren
,
U.
, and
Olofsson
,
U.
,
1999
, “
Application of a Constitutive Model for Micro-Slip in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
170
(
1–2
), pp.
65
77
.10.1016/S0045-7825(98)00189-3
30.
Hagman
,
L.
,
1993
, “
Micro-Slip and Surface Deformation
,” Ph.D. thesis,
KTH Royal Institute of Technology
, Stockholm, Sweden.
31.
Reshetov
,
D.
, and
Levina
,
Z.
,
1965
, “
Machine Design for Contact Stiffness
,”
Mach. Tool.
,
36
(
12
), pp.
15
23
.
32.
Dolbey
,
M.
, and
Bell
,
R.
,
1971
, “
The Contact Stiffness of Joints at Low Apparent Interface Pressures
,”
Ann. CIRP
,
19
, pp.
67
79
.
33.
Escudero
,
A.
,
Rodriguez-Blanco
,
S.
, and
Corral
,
R.
, “
Validation of a Methodology to Assess the Flutter Limit Cycle Oscillation Amplitude of Low-Pressure Turbine Bladed-Disks - Part II: Rotational Speed Effects
,”
ASME J. Eng. Gas Turbines Power
, 147(6), p. 061002.10.1115/1.4066584
34.
Vazquez
,
R.
,
Torre
,
D.
, and
Serrano
,
A.
,
2014
, “
The Effect of Airfoil Clocking on Efficiency and Noise of Low Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
6
), p.
061006
.10.1115/1.4025572
35.
Torre
,
D.
,
Vázquez
,
R.
,
Armañanzas
,
L.
,
Partida
,
F.
, and
García-Valdecasas
,
G.
,
2014
, “
The Effect of Airfoil Thickness on the Efficiency of Low-Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
5
), p.
051014
.10.1115/1.4025163
36.
Vazquez
,
R.
, and
Torre
,
D.
,
2014
, “
The Effect of Surface Roughness on Efficiency of Low Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
6
), p.
061008
.10.1115/1.4025571
37.
Martel
,
C.
,
Corral
,
R.
, and
Llorens
,
J. M.
,
2008
, “
Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning
,”
ASME J. Turbomach.
,
130
(
1
), p. 011006.10.1115/1.2720503
38.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Vasco
,
C.
,
2007
, “
Aeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods
,”
ASME J. Turbomach.
,
129
(
1
), pp.
72
83
.10.1115/1.2366512
You do not currently have access to this content.