Abstract

Electric vehicles (EVs) and hybrid powertrain vehicles are an increasingly common alternative to pure gasoline vehicles. However, most have significantly shorter drivable ranges than combustion engine vehicles, require a long waiting period to recharge, have a low specific power, or are prohibitively expensive and heavy. The goal of this work is to develop and showcase a high-power density generator, which may be used as a component in an EV or hybrid drivetrain. The generator can be used as, for example, a range extender for an EV, or a generator for hybrid powertrains where specific power is important, such as in unmanned aerial vehicles, marine applications, motorcycles, and all terrain vehicles. Moreover, the generator of this work is constructed from commercially available components configured to be easily transportable and remain substantially lightweight. The device discussed in this work comprises a two-stroke single-cylinder gasoline engine and a compact permanent magnet brushless dynamo, assembled as a generator. The advantages of this combination include compactness, simplicity, lower weight, and high specific power. This paper discusses the design and experimental development of such a portable high-power-density power generator. The performance and emissions characteristics of the generator are investigated at varying loads and engine speed. During preliminary experiments, the power generator produced 8.5 kW while having a dry weight of 21 kg. Future design recommendations for the use of alternative or renewable fuels are also explored.

References

1.
Rezvani
,
Z.
,
Jansson
,
J.
, and
Bodin
,
J.
,
2015
, “
Advances in Consumer Electric Vehicle Adoption Research: A Review and Research Agenda
,”
Transp. Res. Part D: Transp. Environ.
,
34
, pp.
122
136
.10.1016/j.trd.2014.10.010
2.
Krishna
,
G.
,
2021
, “
Understanding and Identifying Barriers to Electric Vehicle Adoption Through Thematic Analysis
,”
Transp. Res. Interdiscip. Perspect.
,
10
, p.
100364
.10.1016/j.trip.2021.100364
3.
Egbue
,
O.
, and
Long
,
S.
,
2012
, “
Barriers to Widespread Adoption of Electric Vehicles: An Analysis of Consumer Attitudes and Perceptions
,”
Energy Policy
,
48
, pp.
717
729
.10.1016/j.enpol.2012.06.009
4.
Eberle
,
U.
, and
Helmolt
,
R.
,
2010
, “
Sustainable Transportation Based on Electric Vehicle Concepts: A Brief Overview
,”
Energy Environ. Sci.
,
3
(
6
), p.
689
.10.1039/c001674h
5.
Jena
,
R.
,
2020
, “
An Empirical Case Study on Indian Consumers' Sentiment Towards Electric Vehicle: A Big Data Analytics Approach
,”
Ind. Mark. Manage.
,
90
, pp.
605
616
.10.1016/j.indmarman.2019.12.012
6.
Tran
,
M. K.
,
Bhatti
,
A.
,
Vrolyk
,
R.
,
Wong
,
D.
,
Panchal
,
S.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2021
, “
A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives
,”
World Electr. Veh. J.
,
12
(
2
), p.
54
.10.3390/wevj12020054
7.
Javed
,
A.
,
Khalid
,
H. A.
,
Arif
,
S. U. B.
,
Imran
,
M.
,
Rezk
,
A.
, and
Khan
,
Z. A.
,
2021
, “
Micro Gas Turbine Small-Scale Effects in Range Extended Electric Vehicles
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120906
.10.1115/1.4051384
8.
Sioshansi
,
R.
, and
Denholm
,
P.
,
2009
, “
Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services
,”
Environ. Sci. Technol.
,
43
(
4
), pp.
1199
1204
.10.1021/es802324j
9.
Bermperis
,
D.
,
Ntouvelos
,
E.
,
Kavvalos
,
M. D.
,
Vouros
,
S.
,
Kyprianidis
,
K. G.
, and
Kalfas
,
A. I.
,
2024
, “
Synergies and Trade-Offs in Hybrid Propulsion Systems Through Physics-Based Electrical Component Modeling
,”
ASME J. Eng. Gas Turbines Power
,
146
(
1
), p.
011005
.10.1115/1.4063381
10.
Heron
,
A.
, and
Reinderknecht
,
F.
,
2013
, “
Comparison of Range Extender Technologies for Battery Electric Vehicles
,”
Proceedings of the 2013 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies
, Stuttgart, Germany, Mar. 27–30.10.1109/EVER.2013.6521579
11.
Ghelani
,
R.
,
Roumeliotis
,
I.
,
Saias
,
C. A.
,
Mourouzidis
,
C.
,
Pachidis
,
V.
,
Norman
,
J.
, and
Bacic
,
M.
,
2023
, “
Design Methodology and Mission Assessment of Parallel Hybrid Electric Propulsion Systems
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031002
.10.1115/1.4055635
12.
Friedl
,
H.
,
Friedl
,
G.
,
Hubmann
,
C.
,
Sorger
,
H.
,
Teuschl
,
G.
, and
Martin
,
C.
,
2018
, “
Range Extender Technology for Electric Vehicles
,”
Proceedings of the 2018 5th International Conference on Electric Vehicular Technology
, Surakarta, Indonesia, Oct. 30–31.
13.
Dev
,
S.
,
Stevenson
,
D.
,
Yousefi
,
A.
,
Guo
,
H.
, and
Butler
,
J.
,
2022
, “
An Experimental Study on a Dual-Fuel Generator Fueled With Diesel and Simulated Biogas
,”
ASME J. Eng. Gas Turbines Power
,
144
(
7
), p.
071014
.10.1115/1.4054373
14.
Evelyn
,
E.
,
Aziz
,
A. R. A.
, and
Sambegoro
,
P. L.
,
2020
, “
A Review of Range Extender Technologies in Electric Vehicles
,”
Int. J. Sustainable Transp. Technol.
,
3
(
1
), pp.
7
11
.10.31427/IJSTT.2020.3.1.2
15.
Borghi
,
M.
,
Mattarelli
,
E.
,
Muscoloni
,
J.
,
Rinaldini
,
C. A.
,
Savioli
,
T.
, and
Zardin
,
B.
,
2017
, “
Design and Experimental Development of a Compact and Efficient Range Extender Engine
,”
Appl. Energy
,
202
, pp.
507
526
.10.1016/j.apenergy.2017.05.126
16.
Capaldi
,
P.
,
2011
, “
A Compact 10 kw Electric Power Range Extender Suitable for Plug-In and Series Hybrid Vehicles
,”
SAE
Paper No. 2011-24-0085.10.4271/2011-24-0085
17.
Banihabib
,
R.
,
Skaug Fadnes
,
F.
,
Assadi
,
M.
, and
Bensmann
,
B.
,
2024
, “
Optimizing Micro Gas Turbine Operation in a Microgrid System With Natural Gas and Hydrogen Fuel: An Artificial Intelligence-Based Approach
,”
ASME J. Eng. Gas Turbines Power
, 146(2), p.
021005
.10.1115/1.4063423
18.
Heywood
,
J. B.
, and
Sher
,
E.
,
1999
,
The Two-Stroke Cycle Engine: Its Development, Operation, and Design
,
Society of Automotive Engineers
, Warrendale, PA.
19.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
20.
Ausserer
,
J. K.
,
Polanka
,
M. D.
,
Litke
,
P. J.
, and
Baranski
,
J. A.
,
2019
, “
The Control Space for Knock Mitigation in Two-Stroke Engines for 10–25 kg Remotely Piloted Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091010
.10.1115/1.4043745
21.
Genibrel
,
J. L.
,
2011
,
The Complete YAMAHA KT100
,
Genibrel Publications, Encino, CA.
22.
Addepalli
,
S. K.
,
Mallikarjuna
,
J. M.
, and
Davinder
,
K.
,
2016
, “
Effect of Engine Parameters on In-Cylinder Flows in a Two-Stroke Gasoline Direct Injection Engine
,”
Appl. Energy
,
176
, pp.
282
294
.10.1016/j.apenergy.2016.05.067
23.
López
,
J. J.
,
Molina
,
S.
,
García
,
A.
,
Valero-Marco
,
J.
, and
Justet
,
F.
,
2017
, “
Analysis of the Potential of a New Automotive Two-Stroke Gasoline Engine Able to Operate in Spark Ignition and Controlled Autoignition Combustion Modes
,”
Appl. Therm. Eng.
,
126
, pp.
834
847
.10.1016/j.applthermaleng.2017.07.213
24.
Verhelst
,
S.
,
Turner
,
J. W. G.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.10.1016/j.pecs.2018.10.001
25.
Gore
,
M.
,
Nonavinakere Vinod
,
K.
, and
Fang
,
T.
,
2023
, “
Experimental Investigation of Gaseous Mixtures of Ethane, Methane, and Carbon Dioxide as an Alternative to Conventional Fuel in Spark Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
032301
.10.1115/1.4055201
26.
Farooq
,
M. S.
,
Baig
,
A.
,
Wei
,
Y.
, and
Liu
,
H.
,
2024
, “
Comprehensive Review on Technical Developments of Methanol-Fuel-Based Spark Ignition Engines to Improve the Performance, Combustion, and Emissions
,”
ASME J. Energy Resour. Technol.
,
146
(
7
), p.
070801
.10.1115/1.4065249
You do not currently have access to this content.