Abstract

The buoyancy-induced flow structure and heat transfer in rotating cavities is a well-known conjugate problem. The disk temperatures affect the flow and vice versa. This creates a challenging environment to study as it is three-dimensional, unstable, and unsteady. Further, the vast timescale range between the flow and thermal transients on the disks proves impractical to simulate within rapid engine design cycles, requiring validated reduced-order physics-based models. Literature has established the relationship between the temperature of the core and heat transfer and how this is affected by compressibility, resulting in a critical Reynolds number at which disk Nusselt number is maximum. This work presents new thermal measurements of a rotating cavity at engine representative conditions under elevated test section absolute pressure from the Sussex Multiple Cavity Rig (MCR). The axial throughflow temperature rise is recorded by shaft mounted thermocouple rakes, offering the opportunity for first-order energy balance estimates. By increasing the density of the throughflow air, this allows the investigation at Reθ and Gr rarely published from academic facilities, providing further insights into the interplay between the governing nondimensional parameters. The results have shown, for all comparable cases of constant Ro, increasing Reθ has reduced disk surface temperatures. Despite elevated Gr > 1013 and high temperature gradients, there is no conclusive evidence of thermal stratification and the associated sharp reduction in shroud heat transfer.

References

1.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
2.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.10.1115/1.4048601
3.
Nicholas
,
T. E. W.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Tang
,
H.
,
2024
, “
A Model of Mass and Heat Transfer for Disc Temperature Prediction in Open Compressor Cavities
,”
ASME J. Turbomach.
,
146
(
4
), p.
041001
.10.1115/1.4064082
4.
Gao
,
F.
, and
Chew
,
J. W.
,
2022
, “
Flow and Heat Transfer Mechanisms in a Rotating Compressor Cavity Under Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051010
.10.1115/1.4052649
5.
Gao
,
F.
, and
Chew
,
J. W.
,
2021
, “
Ekman Layer Scrubbing and Shroud Heat Transfer in Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071010
.10.1115/1.4050366
6.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1979
, “
Vortex Breakdown in a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
90
(
1
), pp.
109
127
.10.1017/S0022112079002093
7.
Fisher
,
E.
, and
Puttock-Brown
,
M. R.
,
2024
, “
Experimental Measurements of Flow-Averaged Toroidal Vortices in Buoyancy-Dominated Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041006
.10.1115/1.4063689
8.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.10.1115/1.4050631
9.
Tang
,
H.
, and
Owen
,
J. M.
,
2023
, “
Plume Model for Buoyancy-Induced Flow and Heat Transfer in Closed Rotating Cavities
,”
ASME J. Turbomach.
,
145
(
1
), p.
011005
.10.1115/1.4055449
10.
Lock
,
G. D.
,
Jackson
,
R. W.
,
Pernak
,
M.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Tang
,
H.
, and
Scobie
,
J. A.
,
2023
, “
Stratified and Buoyancy-Induced Flow in Closed Compressor Rotors
,”
ASME J. Turbomach.
,
145
(
1
), p.
011008
.10.1115/1.4055448
11.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.10.1115/1.4049100
12.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2012
, “
Local Measurements of Disk Heat Transfer in Heated Rotating Cavities for Several Flow Regimes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051016
.10.1115/1.4003965
13.
Diemel
,
E.
,
Odenbach
,
S.
,
Uffrecht
,
W.
,
Rey Villazon
,
J.
,
Guijarro Valencia
,
A.
, and
Reinecke
,
M.
,
2019
, “
High Speed Single Cavity Rig With Axial Throughflow of Cooling Air: Rig Structure and Periphery
,”
ASME
Paper No. GT2019-91265.10.1115/GT2019-91265
14.
Diemel
,
E.
,
Odenbach
,
S.
,
Uffrecht
,
W.
,
Villazon
,
J. R.
,
Valencia
,
A. G.
, and
Porras
,
A. F. S.
,
2021
, “
High Speed Single Cavity Rig With Axial Throughflow of Cooling Air: Heat Transfer and Fluid Phenomena
,” 14th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, ETC14, Gdansk, Poland, Apr. 12–16, Paper No.
ETC2021-540
.10.29008/ETC2021-540
15.
Quan
,
Y.
,
Han
,
D.
,
Xu
,
G.
,
Wen
,
J.
, and
Luo
,
X.
,
2018
, “
Convective Heat Transfer of a Rotating Multi-Stage Cavity With Axial Throughflow
,”
Int. J. Heat Mass Transfer
,
119
, pp.
117
127
.10.1016/j.ijheatmasstransfer.2017.11.110
16.
Alexiou
,
A.
,
2000
, “
Flow and Heat Transfer in Gas Turbine H.P. Compressor Internal Air System
,” Ph.D. thesis,
University of Sussex
,
Brighton, UK
.
17.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.10.1016/j.ijheatfluidflow.2007.04.009
18.
Atkins
,
N. R.
,
2013
, “
Investigation of a Radial-Inflow Bleed as a Potential Compressor Clearance Control
,”
ASME
Paper No. GT2013-95768.10.1115/GT2013-95768
19.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-27174.10.1115/GT2014-27174
20.
Puttock-Brown
,
M. R.
,
2018
, “
Experimental and Numerical Investigation of Flow Structure and Heat Transfer in Gas Turbine HP Compressor Secondary Air Systems
,”
Ph.D. thesis
,
University of Sussex
,
Brighton, UK
.https://sussex.figshare.com/articles/thesis/Experimental_and_numerical_investigation_of_flow_structure_and_heat_transfer_in_gas_turbine_HP_compressor_secondary_air_systems/23456549?file=41165033
21.
Fazeli
,
S. M.
,
Kanjirakkad
,
V.
, and
Long
,
C. A.
,
2021
, “
Experimental and Computational Investigation of Flow Structure of Buoyancy Induced Flow in Heated Rotating Cavities
,”
J. Global Power Propul. Soc.
,
5
, pp.
148
163
.10.33737/jgpps/140595
22.
Fox
,
E. C.
,
Puttock-Brown
,
M. R.
, and
Davies
,
S. J.
,
2022
, “
Design and Development of a Five-Hole Probe Calibrator and Traverse to Investigate Ingestion in Rotating Cavities of HP Compressors
,”
ASME
Paper No. GT2022-80940.10.1115/GT2022-80940
23.
Fazeli
,
S. M.
,
Kanjirakkad
,
V.
, and
Long
,
C. A.
,
2021
, “
Experimental and Computational Investigation of Flow Structure in Buoyancy-Dominated Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071026
.10.1115/1.4049482
24.
Fazeli
,
S. M.
,
Kanjirakkad
,
V.
, and
Long
,
C. A.
,
2021
, “
Investigation of Buoyancy-Driven Heat Transfer in HP Compressor Disc Cavities
,”
AIAA
Paper No. 2021-3484.10.2514/6.2021-3484
25.
Fisher
,
E. C.
,
2023
, “
Experimental Investigation of Axial Throughflow Ingestion in Rotating Cavities of Gas Turbine HP Compressors (Under Embargo)
,”
Ph.D. thesis
,
University of Sussex
,
Brighton, UK
.https://sussex.figshare.com/articles/thesis/Experimental_investigation_of_axial_throughflow_ingestion_in_rotating_cavities_of_gas_turbine_HP_compressors/24525268
26.
Puttock-Brown
,
M. R.
,
Rose
,
M. G.
, and
Long
,
C. A.
,
2017
, “
Experimental and Computational Investigation of Rayleigh-Bénard Flow in the Rotating Cavities of a Core Compressor
,”
ASME
Paper No. GT2017-64884.10.1115/GT2017-64884
27.
Long
,
C. A.
,
Miche
,
N. D. D.
, and
Childs
,
P. R. N.
,
2007
, “
Flow Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1391
1404
.10.1016/j.ijheatfluidflow.2007.04.010
You do not currently have access to this content.