Abstract

Turbine engine monitoring is a well-known and well-studied subject that proves to be essential for the aeronautic industry. A popular approach in engine monitoring is constructing indicators that reflect systems' health states by leveraging operational measurements (i.e., sensors' data during flights)—this is known as the engine performance's inverse problem. There exists an extensive literature on this topic, especially revolving around two well-used types of performance indicators of aircraft engines: efficiencies and air mass flow rates of engine's modules. This review aims to provide a comprehensive survey of this particular literature, which so far has not been properly organized and structured. Our first contribution is to propose a novel taxonomy of the relevant methods. In particular, we consider the role of physics-based models—an element that provides specific advantages and challenges in the context of aircraft engines monitoring—and see if each method exploits such models inside or outside the main algorithmic process (or not exploiting them at all). Our second contribution is to identify the pros and cons of each method, along with additional insights with respect to two commonly encountered challenges: under-determined scenarios and time-series data. Finally, we give some guidelines for selecting appropriate strategies in practical situations and perspectives for future works.

References

1.
Urban
,
L. A.
,
1969
,
Gas Turbine Engine Parameter Interrelationships
,
Hamilton Standard Division of United Aircraft Corporation
.
2.
Urban
,
L. A.
,
1973
, “
Gas Path Analysis Applied to Turbine Engine Condition Monitoring
,”
J. Aircr.
,
10
(
7
), pp.
400
406
.10.2514/3.60240
3.
Fentaye
,
A. D.
,
Baheta
,
A. T.
,
Gilani
,
S. I.
, and
Kyprianidis
,
K. G.
,
2019
, “
A Review on Gas Turbine Gas-Path Diagnostics: State-of-The-Art Methods, Challenges and Opportunities
,”
Aerospace
,
6
(
7
), p.
83
.10.3390/aerospace6070083
4.
Hanachi
,
H.
,
Mechefske
,
C.
,
Liu
,
J.
,
Banerjee
,
A.
, and
Chen
,
Y.
,
2018
, “
Performance-Based Gas Turbine Health Monitoring, Diagnostics, and Prognostics: A Survey
,”
IEEE Trans. Reliab.
,
67
(
3
), pp.
1340
1363
.10.1109/TR.2018.2822702
5.
Wen
,
Y.
,
Rahman
,
M. F.
,
Xu
,
H.
, and
Tseng
,
T.-L. B.
,
2022
, “
Recent Advances and Trends of Predictive Maintenance From Data-Driven Machine Prognostics Perspective
,”
Measurements
,
187
, p.
110276
.10.1016/j.measurement.2021.110276
6.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.10.1115/1.4026126
7.
De Castro-Cros
,
M.
,
Velasco
,
M.
, and
Angulo
,
C.
,
2021
, “
Machine-Learning-Based Condition Assessment of Gas Turbines—A Review
,”
Energies
,
14
(
24
), p.
8468
.10.3390/en14248468
8.
Simon
,
D. L.
,
2010
, “
Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) User's Guide
,” Report No.
NASA/TM—2010-215840
.https://ntrs.nasa.gov/api/citations/20100005639/downloads/20100005639.pdf
9.
Loboda
,
I.
,
Pérez-Ruiz
,
J. L.
, and
Yepifanov
,
S.
,
2018
, “
A Benchmarking Analysis of a Data-Driven Gas Turbine Diagnostic Approach
,”
ASME
Paper No. GT2018-76887.10.1115/GT2018-76887
10.
Koskoletos
,
O. A.
,
Aretakis
,
N.
,
Alexiou
,
A.
,
Romesis
,
C.
, and
Mathioudakis
,
K.
,
2018
, “
Evaluation of Aircraft Engine Diagnostic Methods Through ProDiMES
,”
ASME
Paper No. GT2018-76647.10.1115/GT2018-76647
11.
Howell
,
J. R.
, and
Buckius
,
R. O.
,
1987
,
Fundamentals of Engineering Thermodynamics
, Vol.
2
,
McGraw-Hill Companies
, New York.
12.
Holman
,
J.
,
1988
,
Thermodynamics
,
McGraw-Hill
, New York.
13.
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2003
, “
Optimized Operating Point Selection for Gas Turbine Health State Analysis by Using a Multi-Point Technique
,”
ASME
Paper No. GT2003-38191.10.1115/GT2003-38191
14.
Kobayashi
,
T.
, and
Simon
,
D. L.
,
2006
, “
Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics
,” Report No.
NASA/TM-2006-214491
.https://ntrs.nasa.gov/api/citations/20070002904/downloads/20070002904.pdf
15.
Von Moll
,
A.
,
Behbahani
,
A. R.
,
Fralick
,
G. C.
,
Wrbanek
,
J. D.
, and
Hunter
,
G. W.
,
2014
, “
A Review of Exhaust Gas Temperature Sensing Techniques for Modern Turbine Engine Controls
,”
AIAA
Paper No. 2014-3977.10.2514/6.2014-3977
16.
Burke
,
R.
, and
Brace
,
C.
,
2010
, “
The Effects of Engine Thermal Conditions on Performance, Emissions and Fuel Consumption
,” Report No.
2010-01-0802
.10.4271/2010-01-0802
17.
Doel
,
D. L.
,
1993
, “
An Assessment of Weighted-Least-Squares Based Gas Path Analysis
,”
ASME
Paper No. 93-GT-119.10.1115/93-GT-119
18.
Volponi
,
A. J.
,
2003
, “
Foundation of Gas Path Analysis (Part I and II)
,”
Gas Turbine Condition Monit. Fault Diagnosis
, Brussels, Belgium.
19.
Passalacqua, J. R., 1975, “Trends™: An Automatic Gas Turbine Diagnostic System.”
ASME
Paper No. 75-GT-82.10.1115/75-GT-82
20.
Escher
,
P.
,
1995
, “
Pythia: An Object-Orientated Gas Path Analysis Computer Program for General Applications
,”
Ph.D. thesis
, Cranfield University, Bedford, UK.http://hdl.handle.net/1826/3457
21.
Stamatis
,
A.
,
2011
, “
Evaluation of Gas Path Analysis Methods for Gas Turbine Diagnosis
,”
J. Mech. Sci. Technol.
,
25
(
2
), pp.
469
477
.10.1007/s12206-010-1207-5
22.
Kamboukos
,
P.
, and
Mathioudakis
,
K.
,
2005
, “
Comparison of Linear and Nonlinear Gas Turbine Performance Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
49
56
.10.1115/1.1788688
23.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
,
1989
,
Adaptive Simulation of Gas Turbine Performance
,
ASME
Paper No. 89-GT-205.10.1115/89-GT-205
24.
Kong
,
C.
,
2014
, “
Review on Advanced Health Monitoring Methods for Aero Gas Turbines Using Model Based Methods and Artificial Intelligent Methods
,”
Int. J. Aeronaut. Space Sci.
,
15
(
2
), pp.
123
137
.10.5139/IJASS.2014.15.2.123
25.
Ogaji
,
S.
,
Sampath
,
S.
,
Singh
,
R.
, and
Probert
,
S. D.
,
2002
, “
Parameter Selection for Diagnosing a Gas-Turbine's Performance-Deterioration
,”
Appl. Energy
,
73
(
1
), pp.
25
46
.10.1016/S0306-2619(02)00042-9
26.
Li
,
Y.
, and
Nilkitsaranont
,
P.
,
2009
, “
Gas Turbine Performance Prognostic for Condition-Based Maintenance
,”
Appl. Energy
,
86
(
10
), pp.
2152
2161
.10.1016/j.apenergy.2009.02.011
27.
Hanachi
,
H.
,
Liu
,
J.
,
Banerjee
,
A.
, and
Chen
,
Y.
,
2015
, “
A Framework With Nonlinear System Model and Nonparametric Noise for Gas Turbine Degradation State Estimation
,”
Meas. Sci. Technol.
,
26
(
6
), p.
065604
.10.1088/0957-0233/26/6/065604
28.
Stamatis
,
A.
, and
Papailiou
,
K.
,
1988
, “
Discrete Operating Conditions Gas Path Analysis
,”
AGARD Conference Proceedings
, No. 448, Quebec City, Canada, May 30–June 3, pp.
33
1
.
29.
Stamatis
,
A.
,
Mathioudakis
,
K.
,
Berios
,
G.
, and
Papailiou
,
K.
,
1991
, “
Jet Engine Fault Detection With Discrete Operating Points Gas Path Analysis
,”
J. Propul. Power
,
7
(
6
), pp.
1043
1048
.10.2514/3.23425
30.
Sridhar
,
A.
,
1998
, “
Methods and Apparatus for Estimating Engine Health
,” U.S. Patent No. 6,539,783.
31.
Stamatis
,
A.
,
2008
, “
Optimum Use of Existing Sensor Information for Gas Turbine Diagnostics
,”
ASME
Paper No. GT2008-50296.10.1115/GT2008-50296
32.
Salamat
,
R.
,
2012
, “
Gas Path Diagnostics for Compressors,
Ph.D. thesis
, Cranfield University, Bedford, UK.https://etn.global/wp-content/uploads/2024/10/Cranfield-University-training-Gas-turbine-gas-path-diagnostics-ETN-Global-October-Workshop-2024.pdf
33.
Rootliep
,
T.
,
2020
, “
Turbofan Condition Monitoring Using Evolutionary Algorithm Based Gas Path Analysis: At KLM Engine Services
,”
Master thesis
, TU Delft, Delft, The Netherlands. https://repository.tudelft.nl/record/uuid:7ff9b284-0b7b-4f70-8ed5-4d81f1eb113f
34.
Qin
,
H.
,
Zhao
,
J.
,
Ren
,
L.
,
Li
,
B.
, and
Li
,
Z.
,
2022
, “
Performance Degradation Evaluation of Low Bypass Ratio Turbofan Engine Based on Flight Data
,”
Sustainability
,
14
(
13
), p.
8052
.10.3390/su14138052
35.
Mitchell
,
M.
,
1998
,
An Introduction to Genetic Algorithms
,
MIT Press, Cambridge, MA.
36.
Zedda
,
M.
, and
Singh
,
R.
,
2002
, “
Gas Turbine Engine and Sensor Fault Diagnosis Using Optimization Techniques
,”
J. Propul. Power
,
18
(
5
), pp.
1019
1025
.10.2514/2.6050
37.
Li
,
Y.-G.
,
2017
, “
Diagnostics of Power Setting Sensor Fault of Gas Turbine Engines Using Genetic Algorithm
,”
Aeronaut. J.
,
121
(
1242
), pp.
1109
1130
.10.1017/aer.2017.49
38.
Lo Gatto
,
E.
,
Li
,
Y.
, and
Pilidis
,
P.
,
2006
, “
Gas Turbine Off-Design Performance Adaptation Using a Genetic Algorithm
,”
ASME
Paper No. GT2006-90299.10.1115/GT2006-90299
39.
Li
,
Y. G.
,
Abdul Ghafir
,
M.
,
Wang
,
L.
,
Singh
,
R.
,
Huang
,
K.
, and
Feng
,
X.
,
2011
, “
Non-Linear Multiple Points Gas Turbine Off-Design Performance Adaptation Using a Genetic Algorithm
,”
ASME. J. Eng. Gas Turbines Power.
, 133(7), p. 071701.10.1115/1.4002620
40.
De Giorgi
,
M. G.
, and
Quarta
,
M.
,
2020
, “
Hybrid Multigene Genetic Programming-Artificial Neural Networks Approach for Dynamic Performance Prediction of an Aeroengine
,”
Aerosp. Sci. Technol.
,
103
, p.
105902
.10.1016/j.ast.2020.105902
41.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME. J. Basic Eng.
, 82(1), pp.
35
45
.10.1115/1.3662552
42.
Kerr
,
L.
,
Nemec
,
T.
, and
Gallops
,
G.
,
1992
, “
Real-Time Estimation of Gas Turbine Engine Damage Using a Control Based Kalman Filter Algorithm
,”
ASME. J. Eng. Gas Turbines Power.
, 114(2), pp. 187–195.10.1115/1.2906571
43.
Luppold
,
R.
,
Roman
,
J.
,
Gallops
,
G.
, and
Kerr
,
L.
,
1989
, “
Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts
,”
AIAA
Paper No. 1989-2584.10.2514/6.1989-2584
44.
Volponi
,
A. J.
,
DePold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
,
2003
, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
917
924
.10.1115/1.1419016
45.
Litt
,
J. S.
,
2008
, “
An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation
”,
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011601
.10.1115/1.2747254
46.
Simon
,
D. L.
, and
Garg
,
S.
,
2010
, “
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
,”
ASME. J. Eng. Gas Turbines Power.
, 132(3), p. 031601.10.1115/1.3157096
47.
Simon
,
D.
,
2008
, “
A Comparison of Filtering Approaches for Aircraft Engine Health Estimation
,”
Aerosp. Sci. Technol.
,
12
(
4
), pp.
276
284
.10.1016/j.ast.2007.06.002
48.
Lu
,
F.
,
Ju
,
H.
, and
Huang
,
J.
,
2016
, “
An Improved Extended Kalman Filter With Inequality Constraints for Gas Turbine Engine Health Monitoring
,”
Aerosp. Sci. Technol.
,
58
, pp.
36
47
.10.1016/j.ast.2016.08.008
49.
Simon
,
D.
, and
Simon
,
D. L.
,
2010
, “
Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation
,”
Int. J. Syst. Sci.
,
41
(
2
), pp.
159
171
.10.1080/00207720903042970
50.
Endurthi
,
B. R.
,
2004
, “
Linearization and Health Estimation of a Turbofan Engine
,”
Ph.D. thesis
,
Cleveland State University, Cleveland, OH
.https://engineering.csuohio.edu/sites/default/files/media/ece/documents/Bharath.pdf
51.
Kobayashi
,
T.
, and
Simon
,
D. L.
,
2005
, “
Hybrid Neural-Network Genetic-Algorithm Technique for Aircraft Engine Performance Diagnostics
,”
J. Propul. Power
,
21
(
4
), pp.
751
758
.10.2514/1.9881
52.
Zhou
,
W.
,
2006
, “
Research on Object-Oriented Modeling and Simulation for Aeroengine and Control System
,”
Nanjing University of Aeronautics and Astronautics, Nanjing, China
.
53.
Csank
,
J.
, and
Connolly
,
J. W.
,
2016
, “
Model-Based Engine Control Architecture With an Extended Kalman Filter
,”
AIAA
Paper No. 2016-1623.10.2514/6.2016-1623
54.
Liu
,
X.
,
Zhu
,
J.
,
Luo
,
C.
,
Xiong
,
L.
, and
Pan
,
Q.
,
2022
, “
Aero-Engine Health Degradation Estimation Based on an Underdetermined Extended Kalman Filter and Convergence Proof
,”
ISA Trans.
,
125
, pp.
528
538
.10.1016/j.isatra.2021.06.040
55.
Lu
,
F.
,
Gao
,
T.
,
Huang
,
J.
, and
Qiu
,
X.
,
2018
, “
Nonlinear Kalman Filters for Aircraft Engine Gas Path Health Estimation With Measurement Uncertainty
,”
Aerosp. Sci. Technol.
,
76
, pp.
126
140
.10.1016/j.ast.2018.01.024
56.
Julier
,
S.
,
Uhlmann
,
J.
, and
Durrant-Whyte
,
H. F.
,
2000
, “
A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators
,”
IEEE Trans. Autom. Control
,
45
(
3
), pp.
477
482
.10.1109/9.847726
57.
Van Der Merwe
,
R.
, and
Wan
,
E. A.
,
2001
, “
The Square-Root Unscented Kalman Filter for State and Parameter-Estimation
,” IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (
Cat. No. 01CH37221
),
Salt Lake City, UT, May 7–11
, pp.
3461
3464
.10.1109/ICASSP.2001.940586
58.
Lu
,
F.
,
Huang
,
J.-Q.
,
Ji
,
C.-S.
,
Zhang
,
D.-D.
, and
Jiao
,
H.-B.
,
2014
, “
Gas Path On-Line Fault Diagnostics Using a Nonlinear Integrated Model for Gas Turbine Engines
,”
Int. J. Turbo Jet-Engines
,
31
(
3
), pp.
261
275
.10.1515/tjj20140001
59.
Simon
,
D.
, and
Simon
,
D. L.
,
2005
, “
Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
323
328
.10.1115/1.1789153
60.
Simon
,
D.
, and
Simon
,
D. L.
,
2006
, “
Kalman Filter Constraint Switching for Turbofan Engine Health Estimation
,”
Eur. J. Control
,
12
(
3
), pp.
331
343
.10.3166/ejc.12.341-343
61.
Dewallef
,
P.
,
Leonard
,
O.
, and
Mathioudakis
,
K.
,
2004
, “
On-Line Aircraft Engine Diagnostic Using a Soft-Constrained Kalman Filter
,”
ASME
Paper No. GT2004-53539.10.1115/GT2004-53539
62.
Lu
,
F.
,
Huang
,
J.
, and
Lv
,
Y.
,
2013
, “
Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach
,”
Energies
,
6
(
1
), pp.
492
513
.10.3390/en6010492
63.
Daroogheh
,
N.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2013
, “
Particle Filtering for State and Parameter Estimation in Gas Turbine Engine Fault Diagnostics
,”
2013 American Control Conference
,
Washington, DC, June 17–19
, pp.
4343
4349
.10.1109/ACC.2013.6580508
64.
Daroogheh
,
N.
,
Baniamerian
,
A.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2015
, “
A Hybrid Prognosis and Health Monitoring Strategy by Integrating Particle Filters and Neural Networks for Gas Turbine Engines
,” IEEE Conference on Prognostics and Health Management (
PHM
),
Austin, TX, June 22–25
, pp.
1
8
.10.1109/ICPHM.2015.7245020
65.
Zeng
,
L.
,
Dong
,
S.
, and
Long
,
W.
,
2019
, “
The Rotating Components Performance Diagnosis of Gas Turbine Based on the Hybrid Filter
,”
Processes
,
7
(
11
), p.
819
.10.3390/pr7110819
66.
Vu
,
D. Q.
,
Marnissi
,
Y.
,
Razakarivony
,
S.
, and
Nocture
,
M.
,
2023
, “
A Constrained Langevin-Adapted Particle Filter for Aircraft Engines' Health Monitoring
,” 2023 IEEE Conference on Artificial Intelligence (
CAI
), Santa Clara, CA, June 5–6, pp.
183
184
.10.1109/CAI54212.2023.00087
67.
Wang
,
Q.
,
Huang
,
J.
, and
Lu
,
F.
,
2016
, “
An Improved Particle Filtering Algorithm for Aircraft Engine Gas-Path Fault Diagnosis
,”
Adv. Mech. Eng.
,
8
(
7
), p.
1687814016659602
.10.1177/1687814016659602
68.
Chang
,
X.
,
Huang
,
J.
,
Lu
,
F.
, and
Sun
,
H.
,
2016
, “
Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer
,”
Energies
,
9
(
8
), p.
598
.10.3390/en9080598
69.
Tian
,
Y.
,
Chao
,
M. A.
,
Kulkarni
,
C.
,
Goebel
,
K.
, and
Fink
,
O.
,
2022
, “
Real-Time Model Calibration With Deep Reinforcement Learning
,”
Mech. Syst. Signal Process.
,
165
, p.
108284
.10.1016/j.ymssp.2021.108284
70.
De Giorgi
,
M. G.
,
Campilongo
,
S.
, and
Ficarella
,
A.
,
2018
, “
A Diagnostics Tool for Aero-Engines Health Monitoring Using Machine Learning Technique
,”
Energy Procedia
,
148
, pp.
860
867
.10.1016/j.egypro.2018.08.109
71.
De Giorgi
,
M. G.
,
Strafella
,
L.
,
Menga
,
N.
, and
Ficarella
,
A.
,
2022
, “
Intelligent Combined Neural Network and Kernel Principal Component Analysis Tool for Engine Health Monitoring Purposes
,”
Aerospace
,
9
(
3
), p.
118
.10.3390/aerospace9030118
72.
Menga
,
N.
,
Mothakani
,
A.
,
De Giorgi
,
M. G.
,
Przysowa
,
R.
, and
Ficarella
,
A.
,
2022
, “
Extreme Learning Machine-Based Diagnostics for Component Degradation in a Microturbine
,”
Energies
,
15
(
19
), p.
7304
.10.3390/en15197304
73.
Loboda
,
I.
,
González Castillo
,
I.
,
Yepifanov
,
S.
, and
Zelenskyi
,
R.
,
2022
, “
Nonlinear Surrogate Models for Gas Turbine Diagnosis
,”
ASME
Paper No. GT2022-83550.10.1115/GT2022-83550
74.
Castillo
,
I. G.
,
Loboda
,
I.
, and
Pérez Ruiz
,
J. L.
,
2021
, “
Data-Driven Models for Gas Turbine Online Diagnosis
,”
Machines
,
9
(
12
), p.
372
.10.3390/machines9120372
75.
Romessis
,
C.
, and
Mathioudakis
,
K.
,
2004
, “
Bayesian Network Approach for Gas Path Fault Diagnosis
,”
ASME
Paper No. GT2004-53801.10.1115/GT2004-53801
76.
Lee
,
Y. K.
,
Mavris
,
D. N.
,
Volovoi
,
V. V.
,
Yuan
,
M.
, and
Fisher
,
T.
,
2010
, “
A Fault Diagnosis Method for Industrial Gas Turbines Using Bayesian Data Analysis
,”
ASME. J. Eng. Gas Turbines Power
, 132(4), p.
041602
.10.1115/1.3204508
77.
Kestner
,
B. K.
,
Lee
,
Y. K.
,
Voleti
,
G.
,
Mavris
,
D. N.
,
Kumar
,
V.
, and
Lin
,
T.
,
2011
, “
Diagnostics of Highly Degraded Industrial Gas Turbines Using Bayesian Networks
,”
ASME
Paper No. GT2011-45249.10.1115/GT2011-45249
78.
Fentaye
,
A.
,
Zaccaria
,
V.
,
Rahman
,
M.
,
Stenfelt
,
M.
, and
Kyprianidis
,
K.
,
2020
, “
Hybrid Model-Based and Data-Driven Diagnostic Algorithm for Gas Turbine Engines
,”
ASME
Paper No. GT2020-14481.10.1115/GT2020-14481
79.
Mohammadi
,
E.
, and
Montazeri-Gh
,
M.
,
2015
, “
A Fuzzy-Based Gas Turbine Fault Detection and Identification System for Full and Part-Load Performance Deterioration
,”
Aerosp. Sci. Technol.
,
46
, pp.
82
93
.10.1016/j.ast.2015.07.002
80.
Amare
,
F.
,
Gilani
,
S.
,
Aklilu
,
B.
, and
Mojahid
,
A.
,
2017
, “
Two-Shaft Stationary Gas Turbine Engine Gas Path Diagnostics Using Fuzzy Logic
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5593
5602
.10.1007/s12206-017-1053-9
81.
Yazdani
,
S.
, and
Montazeri-Gh
,
M.
,
2020
, “
A Novel Gas Turbine Fault Detection and Identification Strategy Based on Hybrid Dimensionality Reduction and Uncertain Rule-Based Fuzzy Logic
,”
Comput. Ind.
,
115
, p.
103131
.10.1016/j.compind.2019.103131
82.
Sastre
,
F.
,
Velazquez
,
A.
,
De Leon
,
L. S.
,
Montanes
,
J.
, and
Rodrigo
,
J.
,
2020
, “
Method to Solve Redundant Inverse Problems Based on a Latent Semantic Analysis Approach. Application to an Aerojet Engine
,”
Aerosp. Sci. Technol.
,
102
, p.
105854
.10.1016/j.ast.2020.105854
83.
Volponi
,
A. J.
,
2005
, “
Use of Hybrid Engine Modeling for On-Board Module Performance Tracking
,”
ASME
Paper No. GT2005-68169.10.1115/GT2005-68169
84.
Volponi
,
A. J.
, and
Rajamani
,
R.
,
2012
, “
Hybrid Models for Engine Health Management
,” Machine Learning Knowledge Discovery for Engineering Systems Health Management,
Chapman and Hall/CRC
, New York, pp.
395
422
.10.1201/b11580-12
85.
Henriksson
,
M.
,
Borguet
,
S.
,
Léonard
,
O.
, and
Gronstedt
,
T.
,
2007
, “
On Inverse Problems in Turbine Engine Parameter Estimation
,”
ASME
Paper No. GT2007-27756.10.1115/GT2007-27756
You do not currently have access to this content.