Abstract

Recent findings from the U.S. Energy Information Administration project an increase in domestic fossil fuel consumption (e.g., petroleum and natural gas) and global greenhouse gas emissions through 2050 (Nalley, S., 2021, “International Energy Outlook 2021 (IEO2021),” IEO2021 Release, CSIS, Center for Strategic and International Studies, Washington, DC, Technical Presentation, pp. 2–12). Consequently, advanced combustion research aims to identify fuels to mitigate fossil fuel consumption while minimizing exhaust emissions. Ammonia (NH3) is one of these candidates, as it has historically been shown to provide high energy potential and zero-carbon emission (CO and CO2) (Hayakawa, A., Goto, T., Mimoto, R., Arakawa, Y., Kudo, T., and Kobayashi, H., 2015, “Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures,” Fuel, 159, pp. 98–106). As a hydrogen (H2) carrier, NH3 serves as a possible solution to the U.S. Department of Energy's Hydrogen Program Plan by providing efficient H2 storage and conservation capabilities (U.S. Department of Energy, 2020, “Department of Energy Hydrogen Program Plan,” U.S. Department of Energy, Washington, DC, Report No. DOE/EE-2128). As a result, applied turbine-combustion research of NH3 and H2 fuel has been conducted to identify combustion performance parameters that aid in the design of sustainable turbomachinery (Chiong, M.-C., Chong, C., Ng, J., Mashruk, S., Chong, W., Samiran, N., Mong, G., and Medina, A., 2021, “Advancements of Combustion Technologies in the Ammonia-Fuelled Engines,” Energy Convers. Manage., 244, p. 114460). One of these key combustion parameters is the laminar burning speed (LBS). While abundant literature exists on the combustion of NH3 and H2 fuels, there is not sufficient evidence in high-pressure environments to provide a comprehensive understanding of NH3 and H2 combustion phenomena in turbine-combustor settings. To advance the state of the knowledge, NH3 and H2 mixtures were ignited in a spherical chamber across a range of equivalence ratios at 296 K and 5 atm to understand their flame characteristics and LBS which was determined using a multizone constant volume method. The experimental conditions were selected according to primary turbine-combustor conditions, as much research is needed to support NH3–H2 applicability in turbomachinery for power generation. The effect of H2 addition to NH3 fuel was observed by comparing the LBS for various NH3–H2 mixture compositions. Experimental results revealed increased LBS values for H2 enriched NH3, with the maximum LBS occurring at stoichiometry. The experimental data were accurately predicted by the University of Central Florida (UCF) NH3–H2 mechanism developed for this investigation, while NUI 1.1 simulations overestimated recorded LBS data by a significant margin. This study demonstrates and quantifies the enhancing effect of H2 addition to NH3 fuels via LBS and strengthens the literature surrounding NH3–H2 combustion reactions for future work.

References

1.
Nalley
,
S.
,
2021
, “
International Energy Outlook 2021 (IEO2021)
,” IEO2021 Release, CSIS, Center for Strategic and International Studies, Washington, DC, Technical Presentation, pp.
2
12
.
2.
U.S. Department of Energy,
2020
, “
Department of Energy Hydrogen Program Plan
,” U.S. Department of Energy, Washington, DC, Report No.
DOE/EE-2128
.https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/hydrogen-program-plan-2020.pdf?Status=Master
3.
Chiong
,
M.-C.
,
Chong
,
C.
,
Ng
,
J.
,
Mashruk
,
S.
,
Chong
,
W.
,
Samiran
,
N.
,
Mong
,
G.
, and
Medina
,
A.
,
2021
, “
Advancements of Combustion Technologies in the Ammonia-Fuelled Engines
,”
Energy Convers. Manage.
,
244
, p.
114460
.10.1016/j.enconman.2021.114460
4.
Veziroğlu
,
T. N.
, and
Barbir
,
F.
,
1992
, “
Hydrogen: The Wonder Fuel
,”
Int. J. Hydrogen Energy
,
17
(
6
), pp.
391
404
.10.1016/0360-3199(92)90183-W
5.
Singh
,
S.
,
Jain
,
S.
,
Ps
,
V.
,
Tiwari
,
A. K.
,
Nouni
,
M. R.
,
Pandey
,
J. K.
, and
Goel
,
S.
,
2015
, “
Hydrogen: A Sustainable Fuel for Future of the Transport Sector
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
623
633
.10.1016/j.rser.2015.06.040
6.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Mounaim-Rousselle
,
C.
,
2020
, “
Experimental Study on Ammonia/Hydrogen/Air Combustion in Spark Ignition Engine Conditions
,”
Fuel
,
269
, p.
117448
(in English).10.1016/j.fuel.2020.117448
7.
Meng
,
X.
,
Zhao
,
C.
,
Cui
,
Z.
,
Zhang
,
X.
,
Zhang
,
M.
,
Tian
,
J.
,
Long
,
W.
, and
Bi
,
M.
,
2023
, “
Understanding of Combustion Characteristics and NO Generation Process With Pure Ammonia in the Pre-Chamber Jet-Induced Ignition System
,”
Fuel
,
331
, p.
125743
.10.1016/j.fuel.2022.125743
8.
Chai
,
W. S.
,
Bao
,
Y.
,
Jin
,
P.
,
Tang
,
G.
, and
Zhou
,
L.
,
2021
, “
A Review on Ammonia, Ammonia-Hydrogen and Ammonia-Methane Fuels
,”
Renewable Sustainable Energy Rev.
,
147
, p.
111254
.10.1016/j.rser.2021.111254
9.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
(in English).10.1016/j.proci.2018.09.029
10.
Takeishi
,
H.
,
Hayashi
,
J.
,
Kono
,
S.
,
Arita
,
W.
,
Iino
,
K.
, and
Akamatsu
,
F.
,
2015
, “
Characteristics of Ammonia/N2/O2 Laminar Flame in Oxygen-Enriched Air Condition
,”
Trans. JSME
,
81
(
824
), p. 14–00423 (in Japanese).10.1299/transjsme.14-00423
11.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.10.1016/j.fuel.2015.06.070
12.
Huo
,
Y.
, and
Chow
,
W. K.
,
2017
, “
Flame Propagation of Premixed Liquefied Petroleum Gas Explosion in a Tube
,”
Appl. Therm. Eng.
,
113
, pp.
891
901
.10.1016/j.applthermaleng.2016.11.040
13.
Mendiara
,
T.
, and
Glarborg
,
P.
,
2009
, “
Ammonia Chemistry in Oxy-Fuel Combustion of Methane
,”
Combust. Flame
,
156
(
10
), pp.
1937
1949
.10.1016/j.combustflame.2009.07.006
14.
Bazooyar
,
B.
,
Coomson
,
G.
,
Manovic
,
V.
, and
Nabavi
,
S. A.
,
2023
, “
Comparative Analysis of Ammonia Combustion for Domestic Applications
,”
J. Energy Inst.
,
106
, p.
101130
.10.1016/j.joei.2022.10.008
15.
Zitouni
,
S.
,
Brequigny
,
P.
, and
Mounaïm-Rousselle
,
C.
,
2023
, “
Turbulent Flame Speed and Morphology of Pure Ammonia Flames and Blends With Methane or Hydrogen
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
2269
2278
.10.1016/j.proci.2022.07.179
16.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2019
, “
Measurement and Modelling of the Laminar Burning Velocity of Methane-Ammonia-Air Flames at High Pressures Using a Reduced Reaction Mechanism
,”
Combust. Flame
,
204
, pp.
162
175
.10.1016/j.combustflame.2019.03.008
17.
Mashruk
,
S.
,
Zitouni
,
S. E.
,
Brequigny
,
P.
,
Mounaim-Rousselle
,
C.
, and
Valera-Medina
,
A.
,
2022
, “
Combustion Performances of Premixed Ammonia/Hydrogen/Air Laminar and Swirling Flames for a Wide Range of Equivalence Ratios
,”
Int. J. Hydrogen Energy
,
47
(
97
), pp.
41170
41182
.10.1016/j.ijhydene.2022.09.165
18.
Gotama
,
G. J.
,
Hayakawa
,
A.
,
Okafor
,
E. C.
,
Kanoshima
,
R.
,
Hayashi
,
M.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2022
, “
Measurement of the Laminar Burning Velocity and Kinetics Study of the Importance of the Hydrogen Recovery Mechanism of Ammonia/Hydrogen/Air Premixed Flames
,”
Combust. Flame
,
236
, p.
111753
.10.1016/j.combustflame.2021.111753
19.
Goldmann
,
A.
, and
Dinkelacker
,
F.
,
2018
, “
Approximation of Laminar Flame Characteristics on Premixed Ammonia/Hydrogen/Nitrogen/Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
224
, pp.
366
378
.10.1016/j.fuel.2018.03.030
20.
Pessina
,
V.
,
Berni
,
F.
,
Fontanesi
,
S.
,
Stagni
,
A.
, and
Mehl
,
M.
,
2022
, “
Laminar Flame Speed Correlations of Ammonia/Hydrogen Mixtures at High Pressure and Temperature for Combustion Modeling Applications
,”
Int. J. Hydrogen Energy
,
47
(
61
), pp.
25780
25794
.10.1016/j.ijhydene.2022.06.007
21.
Bioche
,
K.
,
Bricteux
,
L.
,
Bertolino
,
A.
,
Parente
,
A.
, and
Blondeau
,
J.
,
2021
, “
Large Eddy Simulation of Rich Ammonia/Hydrogen/Air Combustion in a Gas Turbine Burner
,”
Int. J. Hydrogen Energy
,
46
(
79
), pp.
39548
39562
.10.1016/j.ijhydene.2021.09.164
22.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.10.1016/j.ijhydene.2017.12.066
23.
Turns
,
S. R.
,
1996
,
Introduction to Combustion
,
McGraw-Hill Companies
,
New York
.
24.
Zhang
,
X.
,
Moosakutty
,
S. P.
,
Rajan
,
R. P.
,
Younes
,
M.
, and
Sarathy
,
S. M.
,
2021
, “
Combustion Chemistry of Ammonia/Hydrogen Mixtures: Jet-Stirred Reactor Measurements and Comprehensive Kinetic Modeling
,”
Combust. Flame
,
234
, p.
111653
.10.1016/j.combustflame.2021.111653
25.
Wang
,
S.
,
Wang
,
Z.
,
Elbaz
,
A.
,
Han
,
X.
,
He
,
Y.
,
Costa
,
M.
,
Konnov
,
A.
, and
Roberts
,
W.
,
2020
, “
Experimental Study and Kinetic Analysis of the Laminar Burning Velocity of NH3/Syngas/Air, NH3/CO/Air and NH3/H2/Air Premixed Flames at Elevated Pressures
,”
Combust. Flame
,
221
, pp.
270
287
.10.1016/j.combustflame.2020.08.004
26.
Stagni
,
A.
,
Cavallotti
,
C.
,
Arunthanayothin
,
S.
,
Song
,
Y.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
, and
Faravelli
,
T.
,
2020
, “
An Experimental, Theoretical and Kinetic-Modeling Study of the Gas-Phase Oxidation of Ammonia
,”
React. Chem. Eng.
,
5
(
4
), pp.
696
711
.10.1039/C9RE00429G
27.
Han
,
X.
,
Wang
,
Z.
,
Costa
,
M.
,
Sun
,
Z.
,
He
,
Y.
, and
Cen
,
K.
,
2019
, “
Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames
,”
Combust. Flame
,
206
, pp.
214
226
.10.1016/j.combustflame.2019.05.003
28.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
29.
Fan
,
A.
,
Xiang
,
Y.
,
Yang
,
W.
, and
Li
,
L.
,
2018
, “
Enhancement of Hydrogen Combustion Efficiency by Helium Dilution in a Micro-Combustor With Wall Cavities
,”
Chem. Eng. Process. - Process Intensif.
,
130
, pp.
201
207
.10.1016/j.cep.2018.06.014
30.
Li
,
Y.
,
Bi
,
M.
,
Zhang
,
K.
, and
Gao
,
W.
,
2021
, “
Effects of Nitrogen and Argon on Ammonia-Oxygen Explosion
,”
Int. J. Hydrogen Energy
,
46
(
40
), pp.
21249
21259
.10.1016/j.ijhydene.2021.03.212
31.
Zhang
,
Q.
,
Ma
,
Q.
, and
Zhang
,
B.
,
2014
, “
Approach Determining Maximum Rate of Pressure Rise for Dust Explosion
,”
J. Loss Prev. Process Ind.
,
29
, pp.
8
12
.10.1016/j.jlp.2013.12.002
32.
Palies
,
P.
,
2020
, “
2—Premixed Combustion for Combustors
,”
Stabilization and Dynamic of Premixed Swirling Flames
,
P.
Palies
, ed.,
Academic Press
, Cambridge, MA, pp.
57
103
.
33.
Benim
,
A. C.
, and
Syed
,
K. J.
,
2015
, “
Chapter 6—Flashback Due to Combustion Instabilities
,”
Flashback Mechanisms in Lean Premixed Gas Turbine Combustion
,
A. C.
Benim
and
K. J.
Syed
, eds.,
Academic Press
,
Boston
, pp.
41
44
.
34.
Tang
,
C.
,
Huang
,
Z.
,
Jin
,
C.
,
He
,
J.
,
Wang
,
J.
,
Wang
,
X.
, and
Miao
,
H.
,
2008
, “
Laminar Burning Velocities and Combustion Characteristics of Propane–Hydrogen–Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
33
(
18
), pp.
4906
4914
.10.1016/j.ijhydene.2008.06.063
35.
El Hadik
,
A. A.
,
1990
, “
The Impact of Atmospheric Conditions on Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
112
(
4
), pp.
590
596
.10.1115/1.2906210
36.
Lokachari
,
N.
,
Panigrahy
,
S.
,
Kukkadapu
,
G.
,
Kim
,
G.
,
Vasu
,
S.
,
Pitz
,
W.
, and
Curran
,
H.
,
2020
, “
The Influence of Iso-Butene Kinetics on the Reactivity of Di-Isobutylene and Iso-Octane
,”
Combust. Flame
,
222
, pp.
186
195
.10.1016/j.combustflame.2020.08.007
37.
Ninnemann
,
E.
,
Kim
,
G.
,
Laich
,
A.
,
Almansour
,
B.
,
Terracciano
,
A. C.
,
Park
,
S.
,
Thurmond
,
K.
, et al.,
2019
, “
Co-Optima Fuels Combustion: A Comprehensive Experimental Investigation of Prenol Isomers
,”
Fuel
,
254
, p.
115630
.10.1016/j.fuel.2019.115630
38.
Mazumdar
,
A.
,
2013
, “
Principles and Techniques of Schleieren Imaging Systems
,” CAVE Laboratory, Columbia University, NY, Report No.
CUCS-016-13
https://mice.cs.columbia.edu/getTechreport.php?format=pdf&techreportID=1542.
39.
Bejan
,
A.
,
2013
, “
Transition to Turbulence
,”
Convection Heat Transfer
, Wiley, Hoboken, NJ, pp.
295
319
.
40.
Dai
,
H.
,
Wang
,
J.
,
Cai
,
X.
,
Su
,
S.
,
Zhao
,
H.
, and
Huang
,
Z.
,
2023
, “
Lewis Number Effects on Laminar and Turbulent Expanding Flames of NH3/H2/Air Mixtures at Elevated Pressures
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
1689
1697
.10.1016/j.proci.2022.07.200
41.
Bouvet
,
N.
,
Halter
,
F.
,
Chauveau
,
C.
, and
Yoon
,
Y.
,
2013
, “
On the Effective Lewis Number Formulations for Lean Hydrogen/Hydrocarbon/Air Mixtures
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
5949
5960
.10.1016/j.ijhydene.2013.02.098
42.
Maller
,
R. R.
,
1998
, “
Passivation of Stainless Steel
,”
Trends Food Sci. Technol.
,
9
(
1
), pp.
28
32
.10.1016/S0924-2244(97)00004-6
43.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.10.1016/j.combustflame.2014.08.022
44.
Bangasser, M., and Battles, M.,
2022
, “
What Is Passivation? How does Passivation Process Work? How To Passivate Stainless Steel Parts?
,” Best Technology Incorporated, Minneapolis, MN, accessed Dec. 12, 2022, https://www.besttechnologyinc.com/passivation-systems/what-is-passivation/#:~:text=Passivation%20is%20a%20widely-used%20metal%20finishing%20process%20to,to%20chemically%20react%20with%20air%20and%20cause%20 corrosion
45.
Pochet
,
M.
,
Dias
,
V.
,
Moreau
,
B.
,
Foucher
,
F.
,
Jeanmart
,
H.
, and
Contino
,
F.
,
2019
, “
Experimental and Numerical Study, Under LTC Conditions, of Ammonia Ignition Delay With and Without Hydrogen Addition
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
621
629
.10.1016/j.proci.2018.05.138
46.
O'Donovan
,
K.
, and
Rallis
,
C. J.
,
1959
, “
A Modified Analysis for the Determination of the Burning Velocity of a Gas Mixture in a Spherical Constant Volume Combustion Vessel
,”
Combust. Flame
,
3
, pp.
201
214
.10.1016/0010-2180(59)90022-7
47.
Bradley
,
D.
, and
Mitcheson
,
A.
,
1976
, “
Mathematical Solutions for Explosions in Spherical Vessels
,”
Combust. Flame
,
26
(
2
), pp.
201
217
(in English).10.1016/0010-2180(76)90072-9
48.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2017
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.2.1
,” Cantera Developers, Warrenville, IL.
49.
Burke
,
U.
,
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Heufer
,
K. A.
,
Dagaut
,
P.
, and
Curran
,
H. J.
,
2016
, “
A Detailed Chemical Kinetic Modeling, Ignition Delay Time and Jet-Stirred Reactor Study of Methanol Oxidation
,”
Combust. Flame
,
165
, pp.
125
136
.10.1016/j.combustflame.2015.11.004
50.
Baker
,
J. B.
,
Rahman
,
R.
,
Pierro
,
M.
,
Higgs
,
J.
,
Urso
,
J.
,
Kinney
,
C.
, and
Vasu
,
S.
,
2023
, “
Experimental Ignition Delay Time Measurements and Chemical Kinetics Modeling of Hydrogen/Ammonia/Natural Gas Fuels
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041002
.10.1115/1.4055721
51.
Alturaifi
,
S. A.
,
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2022
, “
An Experimental and Modeling Study of Ammonia Pyrolysis
,”
Combust. Flame
,
235
, p.
111694
.10.1016/j.combustflame.2021.111694
52.
Deppe
,
J.
,
Friedrichs
,
G.
,
Ibrahim
,
A.
,
Römming
,
H. J.
, and
Wagner
,
H. G.
,
1998
, “
The Thermal Decomposition of NH2 and NH Radicals
,”
Ber. Bunsenges. Phys. Chem.
,
102
(
10
), pp.
1474
1485
.10.1002/bbpc.199800016
53.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
338
.10.1016/0360-1285(89)90017-8
54.
Klippenstein
,
S. J.
,
Harding
,
L. B.
,
Ruscic
,
B.
,
Sivaramakrishnan
,
R.
,
Srinivasan
,
N. K.
,
Su
,
M.-C.
, and
Michael
,
J. V.
,
2009
, “
Thermal Decomposition of NH2OH and Subsequent Reactions: Ab Initio Transition State Theory and Reflected Shock Tube Experiments
,”
J. Phys. Chem. A
,
113
(
38
), pp.
10241
10259
.10.1021/jp905454k
55.
Glarborg
,
P.
,
Alzueta
,
M. U.
,
Dam-Johansen
,
K.
, and
Miller
,
J. A.
,
1998
, “
Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor
,”
Combust. Flame
,
115
(
1–2
), pp.
1
27
.10.1016/S0010-2180(97)00359-3
56.
Dean
,
A. M.
, and
Bozzelli
,
J. W.
,
2000
, “
Combustion Chemistry of Nitrogen
,”
Gas-Phase Combustion Chemistry
,
W. C.
Gardiner
, ed.,
Springer New York
,
New York
, pp.
125
341
.
57.
Chen
,
Z.
,
Burke
,
M. P.
, and
Ju
,
Y.
,
2009
, “
Effects of Compression and Stretch on the Determination of Laminar Flame Speeds Using Propagating Spherical Flames
,”
Combust. Theory Modell.
,
13
(
2
), pp.
343
364
.10.1080/13647830802632192
58.
Salicone
,
S.
, and
Prioli
,
M.
,
2018
,
Measuring Uncertainty Within the Theory of Evidence
,
Springer
, New York.
59.
Li
,
Y.
,
Bi
,
M.
,
Li
,
B.
,
Zhou
,
Y.
, and
Gao
,
W.
,
2018
, “
Effects of Hydrogen and Initial Pressure on Flame Characteristics and Explosion Pressure of Methane/Hydrogen Fuels
,”
Fuel
,
233
, pp.
269
282
.10.1016/j.fuel.2018.06.042
60.
Okafor
,
E. C.
,
Nagano
,
Y.
, and
Kitagawa
,
T.
,
2016
, “
Experimental and Theoretical Analysis of Cellular Instability in Lean H2-CH4-Air Flames at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
41
(
15
), pp.
6581
6592
.10.1016/j.ijhydene.2016.02.151
61.
Baulch
,
D. L.
,
Bowman
,
C. T.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
, et al.,
2005
, “
Evaluated Kinetic Data for Combustion Modeling: Supplement II
,”
J. Phys. Chem. Ref. Data
,
34
(
3
), pp.
757
1397
.10.1063/1.1748524
You do not currently have access to this content.