Abstract

The growing integration of renewable energy sources in the energy grid presents intermittency and negative pricing challenges, necessitating large-scale energy storage solutions. Pumped thermal energy storage (PTES) can address these issues by storing and delivering substantial energy whenever required. High-temperature heat pump development is crucial to deploying PTES for storing heat at sink temperatures that are well above the ambient temperature(>450 °C) to ensure a reasonable round-trip efficiency (RTE). Currently, however, it is not a technological possibility for heat pumps to achieve these temperatures even with the support of freely available heat (200 °C to 400 °C) as source temperatures. This study explores a potential layout of the TI-PTES system that exploits commercially available equipment by storing heat below the ambient temperature while still being able to utilize the freely available heat source (Solar, Waste heat, biomass, etc.) to support the overall RTE. The charging phase employs a well-established CO2-refrigeration cycle to accumulate energy below the ambient temperature in cold thermal storage. While the discharging phase runs a trans-critical CO2 power cycle between the freely available heat source and the cold thermal storage. Overall, offering a practically implementable model for the PTES system with market-available components. The study investigates the design of this innovative system presenting the relevance of different operating and machine parameters as well as the contribution of freely available heat sources to the overall performance. Finally, benchmarking the technology with other long-duration energy storages.

References

1.
Kabat
,
N.
,
Jende
,
E.
,
Nicke
,
E.
, and
Stathopoulos
,
P.
,
2023
, “
Investigation on Process Architectures for High-Temperature Heat Pumps Based on a Reversed Brayton Cycle
,”
ASME
Paper No. GT2023-102497.10.1115/GT2023-102497
2.
Shan
,
R.
,
Reagan
,
J.
,
Castellanos
,
S.
,
Kurtz
,
S.
, and
Kittner
,
N.
,
2022
, “
Evaluating Emerging Long-Duration Energy Storage Technologies
,”
Renewable Sustainable Energy Rev.
,
159
, p.
112240
.10.1016/j.rser.2022.112240
3.
Steinmann
,
W.-D.
,
2017
, “
Thermo-Mechanical Concepts for Bulk Energy Storage
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
205
219
.10.1016/j.rser.2016.10.065
4.
Vannoni
,
A.
,
Giugno
,
A.
, and
Sorce
,
A.
,
2021
, “
Integration of a Flue Gas Condensing Heat Pump Within a Combined Cycle: Thermodynamic, Environmental and Market Assessment
,”
Appl. Therm. Eng.
,
184
, p.
116276
.10.1016/j.applthermaleng.2020.116276
5.
Raggio
,
M.
, and
Ferrari
,
M. L.
,
2023
, “
Compressed Air Energy Storage With T100 Microturbines: Dynamic Analysis and Operational Constraints
,”
J. Energy Storage
,
73
, p.
109093
.10.1016/j.est.2023.109093
6.
Guédez
,
R.
,
Barberis
,
S.
,
Maccarini
,
S.
,
López-Román
,
A.
,
Milani
,
A.
,
Pesatori
,
E.
,
Oyarzábal
,
U.
, and
Sánchez
,
A.
,
2022
, “
Design of a 2 MW Molten Salt Driven Supercritical CO2 Cycle and Turbomachinery for the SOLARSCO2OL Demonstration Project
,”
ASME
Paper No. GT2022-82013.10.1115/GT2022-82013
7.
Toni
,
L.
,
Bellobuono
,
E. F.
,
Valente
,
R.
,
Romei
,
A.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2022
, “
Computational and Experimental Assessment of a MW-Scale Supercritical CO2 Compressor Operating in Multiple Near-Critical Conditions
,”
ASME
Paper No. GT2022-83171.10.1115/GT2022-83171
8.
Zhang
,
Y.
,
He
,
Y.
,
Wang
,
Y.
,
Wu
,
X.
,
Jia
,
M.
, and
Gong
,
Y.
,
2020
, “
Experimental Investigation of the Performance of an R1270/CO2 Cascade Refrigerant System
,”
Int. J. Refrig.
,
114
, pp.
175
180
.10.1016/j.ijrefrig.2020.02.017
9.
Vaccaro
,
G.
,
Milazzo
,
A.
, and
Talluri
,
L.
,
2023
, “
Thermodynamic Assessment of Trans-Critical Refrigeration Systems Utilizing CO2-Based Mixtures
,”
Int. J. Refrig.
,
147
, pp.
61
70
.10.1016/j.ijrefrig.2022.09.013
10.
Shamsi
,
S. S. M.
,
Barberis
,
S.
,
Maccarini
,
S.
, and
Traverso
,
A.
,
2024
, “
Large Scale Energy Storage Systems Based on Carbon Dioxide Thermal Cycles: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
192
, p.
114245
.10.1016/j.rser.2023.114245
11.
Arpagaus
,
C.
,
Bless
,
F.
,
Uhlmann
,
M.
,
Schiffmann
,
J.
, and
Bertsch
,
S. S.
,
2018
, “
High Temperature Heat Pumps: Market Overview, State of the Art, Research Status, Refrigerants, and Application Potentials
,”
Energy
,
152
, pp.
985
1010
.10.1016/j.energy.2018.03.166
12.
Vannoni
,
A.
,
Sorce
,
A.
,
Traverso
,
A.
, and
Fausto Massardo
,
A.
,
2023
, “
Techno-Economic Optimization of High-Temperature Heat Pumps for Waste Heat Recovery
,”
Energy Convers. Manage.
,
290
, p.
117194
.10.1016/j.enconman.2023.117194
13.
Frate
,
G. F.
,
Ferrari
,
L.
,
Sdringola
,
P.
,
Desideri
,
U.
, and
Sciacovelli
,
A.
,
2023
, “
Thermally Integrated Pumped Thermal Energy Storage for Multi-Energy Districts: Integrated Modelling, Assessment and Comparison With Batteries
,”
J. Energy Storage
,
61
, p.
106734
.10.1016/j.est.2023.106734
14.
Ökten
,
K.
, and
Kurşun
,
B.
,
2022
, “
Thermo-Economic Assessment of a Thermally Integrated Pumped Thermal Energy Storage (TI-PTES) System Combined With an Absorption Refrigeration Cycle Driven by Low-Grade Heat Source
,”
J. Energy Storage
,
51
, p.
104486
.10.1016/j.est.2022.104486
15.
Barberis
,
S.
,
Maccarini
,
S.
,
Shamsi
,
S. S. M.
, and
Traverso
,
A.
,
2023
, “
Untapping Industrial Flexibility Via Waste Heat-Driven Pumped Thermal Energy Storage Systems
,”
Energies
,
16
(
17
), p.
6249
.10.3390/en16176249
16.
Morandin
,
M.
,
Maréchal
,
F.
,
Mercangöz
,
M.
, and
Buchter
,
F.
,
2012
, “
Conceptual Design of a Thermo-Electrical Energy Storage System Based on Heat Integration of Thermodynamic Cycles – Part A: Methodology and Base Case
,”
Energy
,
45
(
1
), pp.
375
385
.10.1016/j.energy.2012.03.031
17.
Morandin
,
M.
,
Maréchal
,
F.
,
Mercangöz
,
M.
, and
Buchter
,
F.
,
2012
, “
Conceptual Design of a Thermo-Electrical Energy Storage System Based on Heat Integration of Thermodynamic Cycles – Part B: Alternative System Configurations
,”
Energy
,
45
(
1
), pp.
386
396
.10.1016/j.energy.2012.03.033
18.
Peterson
,
R. B.
,
2011
, “
A Concept for Storing Utility-Scale Electrical Energy in the Form of Latent Heat
,”
Energy
,
36
(
10
), pp.
6098
6109
.10.1016/j.energy.2011.08.003
19.
Vecchi
,
A.
, and
Sciacovelli
,
A.
,
2023
, “
Long-Duration Thermo-Mechanical Energy Storage – Present and Future Techno-Economic Competitiveness
,”
Appl. Energy
,
334
, p.
120628
.10.1016/j.apenergy.2022.120628
20.
Frate
,
G. F.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2020
, “
Rankine Carnot Batteries With the Integration of Thermal Energy Sources: A Review
,”
Energies
,
13
(
18
), p.
4766
.10.3390/en13184766
21.
Shamsi
,
S. S. M.
,
Maccarini
,
S.
,
Trevisan
,
S.
,
Barberis
,
S.
, and
Guedez Mata
,
R. E.
,
2023
, “
sCO2 Based Pumped Heat Thermal Energy Storage Systems Valorizing Industrial Waste Heat Recovery: A Techno-Economic Analysis of the Role of High Temperature TES
,”
ASME
Paper No. GT2023-103080.10.1115/GT2023-103080
22.
Zhang
,
M.
,
Shi
,
L.
,
Zhang
,
Y.
,
He
,
J.
,
Sun
,
X.
,
Hu
,
P.
,
Pei
,
G.
,
Tian
,
H.
, and
Shu
,
G.
,
2023
, “
Configuration Mapping of Thermally Integrated Pumped Thermal Energy Storage System
,”
Energy Convers. Manage.
,
294
, p.
117561
.10.1016/j.enconman.2023.117561
23.
Reboli
,
T.
,
Ferrando
,
M.
,
Gini
,
L.
,
Mantelli
,
L.
,
Sorce
,
A.
, and
Traverso
,
A.
,
2022
, “
Gas Turbine Combined Cycle Range Enhancer—Part 2: Performance Demonstration
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121013
.10.1115/1.4055495
24.
Yang
,
L.
,
Villalobos
,
U.
,
Akhmetov
,
B.
,
Gil
,
A.
,
Khor
,
J. O.
,
Palacios
,
A.
,
Li
,
Y.
,
Ding
,
Y.
,
Cabeza
,
L. F.
,
Tan
,
W. L.
, and
Romagnoli
,
A.
,
2021
, “
A Comprehensive Review on Sub-Zero Temperature Cold Thermal Energy Storage Materials, Technologies, and Applications: State of the Art and Recent Developments
,”
Appl. Energy
,
288
, p.
116555
.10.1016/j.apenergy.2021.116555
25.
Copeland,
2024
, “
CO2 Scroll as a Game Changer | Copeland GB
,” accessed Sept. 5, 2024, https://www.copeland.com/en-gb/products/refrigeration/co2/technology/advancing-scroll
26.
Carel Industries,
2024
, “
Pros in the Use of the Natural Refrigerant CO2 in Refrigeration | CAREL
,” Carel Industries, Padova, Italy, accessed Jan. 5, 2024, https://natref.carel.com/why-CO2-in-refrigeration
28.
INTARCON
,
2020
, “
Transcritical CO2 Refrigeration
,” INTARCON, Córdoba, Spain.
29.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Procedia
,
114
, pp.
5948
5966
.10.1016/j.egypro.2017.03.1731
30.
Miller
,
J. D.
,
Buckmaster
,
D. J.
,
Hart
,
K.
,
Held
,
T. J.
,
Thimsen
,
D.
,
Maxson
,
A.
,
Phillips
,
J. N.
, and
Hume
,
S.
,
2017
, “
Comparison of Supercritical CO2 Power Cycles to Steam Rankine Cycles in Coal-Fired Applications
,”
ASME
Paper No. GT2017-64933.10.1115/GT2017-64933
31.
Marion
,
J.
,
Macadam
,
S.
,
McClung
,
A.
, and
Mortzheim
,
J.
,
2022
, “
The STEP 10 MWe sCO2 Pilot Demonstration Status Update
,”
ASME
Paper No. GT2022-83588.10.1115/GT2022-83588
32.
Gabrielli
,
P.
,
Sansavini
,
G.
,
Singh
,
S.
,
Garcia
,
L. S.
,
Jacquemoud
,
E.
, and
Jenny
,
P.
,
2022
, “
Off-Design Modeling and Operational Optimization of Trans-Critical Carbon Dioxide Heat Pumps
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101004
.10.1115/1.4055233
33.
Dumont
,
O.
,
Frate
,
G. F.
,
Pillai
,
A.
,
Lecompte
,
S.
,
De Paepe
,
M.
, and
Lemort
,
V.
,
2020
, “
Carnot Battery Technology: A State-of-the-Art Review
,”
J. Energy Storage
,
32
, p.
101756
.10.1016/j.est.2020.101756
34.
Weiland
,
N. T.
,
Lance
,
B. W.
, and
Pidaparti
,
S. R.
,
2019
, “
sCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications
,”
ASME
Paper No. GT2019-90493.10.1115/GT2019-90493
35.
Ho
,
C. K.
,
Carlson
,
M.
,
Garg
,
P.
, and
Kumar
,
P.
,
2015
, “
Cost and Performance Tradeoffs of Alternative Solar-Driven S-CO2 Brayton Cycle Configurations
,”
ASME
Paper No. GT2022-80376.10.1115/GT2022-80376
36.
Passalacqua
,
M.
,
Maccarini
,
S.
, and
Traverso
,
A.
,
2023
, “
CO2 Reverse Cycles Equipped With a Bladeless Turboexpander
,”
Energy Convers. Manage.
,
293
, p.
117489
.10.1016/j.enconman.2023.117489
37.
McCollum
,
D.
, and
Ogden
,
J.
,
2006
, “
Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity
,” Institute of Transportation Studies, University of California, Davis, Davis, CA, Report No.
UCD-ITS-RR-06-14
.https://escholarship.org/content/qt1zg00532/qt1zg00532_noSplash_3bea59c416720f9101cf6b93498c5890.pdf?t=l5wvsi
38.
Espagnet
,
A. R.
,
2016
, “
Techno-Economic Assessment of Thermal Energy Storage Integration Into Low Temperature District Heating Networks
,”
M.S. thesis
, KTH School of Industrial Engineering and Management Energy Technology EGI-2016-068, Division of Heat and Power Technology, Stockholm, Sweden.https://www.divaportal.org/smash/get/diva2:956741/FULLTEXT01.pdf
39.
Caraballo
,
A.
,
Galán-Casado
,
S.
,
Caballero
,
Á.
, and
Serena
,
S.
,
2021
, “
Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis
,”
Energies
,
14
(
4
), p.
1197
.10.3390/en14041197
40.
Thunder Said Energy, 2024, “
Costs of Thermal Energy Storage?
,” accessed Jan. 5, 2024, https://thundersaidenergy.com/downloads/thermal-energy-storage-cost-model/
41.
Short
,
W.
,
Packey
,
D. J.
, and
Holt
,
T.
,
1995
, “
A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies
,” Report No.
NREL/TP–462-5173, 35391
.https://www.nrel.gov/docs/legosti/old/5173.pdf
42.
Etsap, 2024, “I03_cement_June 2010_GS-gct,” accessed Mar. 1, 2024, iea-etsap.org
43.
Entos-E, 2024, “
ENTSO-E Transparency Platform
,” accessed Mar. 1, 2024, https://transparency.entsoe.eu/dashboard/show?loggedUserIsPrivileged=false
44.
Astolfi
,
M.
,
Rizzi
,
D.
,
Macchi
,
E.
, and
Spadacini
,
C.
,
2022
, “
A Novel Energy Storage System Based on Carbon Dioxide Unique Thermodynamic Properties
,”
ASME J. Eng. Gas Turbines Power
,
144
(
8
), p. 081012.10.1115/1.4054750
45.
Tafone
,
A.
,
Ding
,
Y.
,
Li
,
Y.
,
Xie
,
C.
, and
Romagnoli
,
A.
,
2020
, “
Levelised Cost of Storage (LCOS) Analysis of Liquid Air Energy Storage System Integrated With Organic Rankine Cycle
,”
Energy
,
198
, p.
117275
.10.1016/j.energy.2020.117275
46.
Xu
,
M.
,
Zhao
,
P.
,
Huo
,
Y.
,
Han
,
J.
,
Wang
,
J.
, and
Dai
,
Y.
,
2020
, “
Thermodynamic Analysis of a Novel Liquid Carbon Dioxide Energy Storage System and Comparison to a Liquid Air Energy Storage System
,”
J. Cleaner Prod.
,
242
, p.
118437
.10.1016/j.jclepro.2019.118437
47.
Tafone
,
A.
,
Pili
,
R.
,
Pihl Andersen
,
M.
, and
Romagnoli
,
A.
,
2023
, “
Dynamic Modelling of a Compressed Heat Energy Storage (CHEST) System Integrated With a Cascaded Phase Change Materials Thermal Energy Storage
,”
Appl. Therm. Eng.
,
226
, p.
120256
.10.1016/j.applthermaleng.2023.120256
48.
Vecchi
,
A.
,
Knobloch
,
K.
,
Liang
,
T.
,
Kildahl
,
H.
,
Sciacovelli
,
A.
,
Engelbrecht
,
K.
,
Li
,
Y.
, and
Ding
,
Y.
,
2022
, “
Carnot Battery Development: A Review on System Performance, Applications and Commercial State-of-the-Art
,”
J. Energy Storage
,
55
, p.
105782
.10.1016/j.est.2022.105782
You do not currently have access to this content.