Abstract

The turbulent burning velocity (ST) is one of the most important combustion properties controlling combustor operability limits, directly influencing blowoff, flashback, and combustion instabilities. Hydrogen has particularly significant influences on the turbulent flame speed. This paper presents new H2/CH4 data of high pressure, high hydrogen turbulent burning velocities. The datasets were designed to address fundamental questions as well as provide engineering/design relevant insights. This paper presents new scaling analysis of fuel composition, pressure, and preheat temperature effects on turbulent burning velocity. We also discuss the importance of considering what is being held constant (temperature, flame speed, Reynolds number, etc.) when one is analyzing these sensitivities. Data show that hydrogen fraction and pressure cause an increase in turbulent flame speed; whether quantified as raw ST,GC or normalized as ST,GC/SL,0 or ST,GC/SL,max (where SL,0 and SL,max are the unstretched and stretched laminar flame speed, respectively). We also propose that observed increases in ST,GC with pressure are due to increases in Reynolds number and not a kinetics/stretch sensitivity effect. With increasing preheat temperature, ST,GC increases while its normalized value (ST,GC/SL,0 and ST,GC/SL,max) can either increase or decrease, depending upon fuel composition. We also show how these sensitivities vary, depending on whether these comparisons are made at constant raw turbulence intensity urms or at constant normalized urms/SL,0 or urms/SL,max.

References

1.
IEA,
2021
, “
Global Hydrogen Review
,” International Energy Agency, Paris, France, accessed Aug. 29, 2024, https://www.iea.org/reports/global-hydrogen-review-2021
2.
Milton
,
B. E.
, and
Keck
,
J. C.
,
1984
, “
Laminar Burning Velocities in Stoichiometric Hydrogen and Hydrogen-Hydrocarbon Gas Mixtures
,”
Combust. Flame
,
58
(
1
), pp.
13
22
.10.1016/0010-2180(84)90074-9
3.
Jackson
,
G. S.
,
Sai
,
R.
,
Plaia
,
J. M.
,
Boggs
,
C. M.
, and
Kiger
,
K. T.
,
2003
, “
Influence of H2 on the Response of Lean Premixed CH4 Flames to High Strained Flows
,”
Combust. Flame
,
132
(
3
), pp.
503
511
.10.1016/S0010-2180(02)00496-0
4.
Venkateswaran
,
P.
,
Marshall
,
A. D.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Turbulent Consumption Speeds of High Hydrogen Content Fuels From 1–20 Atm
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011504
.10.1115/1.4025210
5.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2016
, “
Flashback Propensity of Turbulent Hydrogen-Air Jet Flames at Gas Turbine Premixer Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061506
.10.1115/1.4031761
6.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
7.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
(Progress in Energy and Combustion Science), No. 28.https://www.researchgate.net/publication/248068931_Theoretical_and_Numerical_Combustion
8.
Trautwein
,
S. E.
,
Grudno
,
A.
, and
Adomeit
,
G.
,
1991
, “
The Influence of Turbulence Intensity and Laminar Flame Speed on Turbulent Flame Propagation Under Engine Like Conditions
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
723
728
.10.1016/S0082-0784(06)80322-X
9.
Smith
,
K. O.
, and
Gouldin
,
F. C.
,
1979
, “
Turbulence Effects on Flame Speed and Flame Structure
,”
AIAA J.
,
17
(
11
), pp.
1243
1250
.10.2514/3.61305
10.
Marshall
,
A.
,
2015
, “
Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels
,”
Ph.D. dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.https://www.osti.gov/servlets/purl/1209909
11.
Venkateswaran
,
P.
,
2013
, “
Measurements and Modeling of Turbulent Consumption Speeds of Syngas Fuel Blends
,”
Ph.D. dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.https://repository.gatech.edu/entities/publication/b5c2ca28-3ee2-4a39-ba71-7fc8493d0e24
12.
Kobayashi
,
H.
,
Kawabata
,
Y.
, and
Maruta
,
K.
,
1998
, “
Experimental Study on General Correlation of Turbulent Burning Velocity at High Pressure
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
941
948
.10.1016/S0082-0784(98)80492-X
13.
Kobayashi
,
H.
,
Seyama
,
K.
,
Hagiwara
,
H.
, and
Ogami
,
Y.
,
2005
, “
Burning Velocity Correlation of Methane/Air Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
827
834
.10.1016/j.proci.2004.08.098
14.
Daniele
,
S.
, and
Jansohn
,
P.
,
2012
, “
Correlations for Turbulent Flame Speed of Different Syngas Mixtures at High Pressure and Temperature
,”
ASME
Paper No. GT2012-69611.10.1115/GT2012-69611
15.
Daniele
,
S.
,
Jansohn
,
P.
,
Mantzaras
,
J.
, and
Boulouchos
,
K.
,
2011
, “
Turbulent Flame Speed for Syngas at Gas Turbine Relevant Conditions
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2937
2944
.10.1016/j.proci.2010.05.057
16.
Lipatnikov
,
A. N.
,
Li
,
W. Y.
,
Jiang
,
L. J.
, and
Shy
,
S. S.
,
2017
, “
Does Density Ratio Significantly Affect Turbulent Flame Speed?
,”
Flow, Turbul. Combust.
,
98
(
4
), pp.
1153
1172
.10.1007/s10494-017-9801-6
17.
Johnson
,
H.
, II
,
2023
, “
Assessment and Analysis of Turbulent Flame Speed Measurements of H2-Containing Fuels
,”
Ph.D. dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.https://repository.gatech.edu/entities/publication/7dca5e65-71e2-4588-be52-e1103ccc2af1
18.
Amato
,
A.
,
2014
, “
Leading Points Concepts in Turbulent Premixed Combustion Modeling
,”
Ph.D. dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.https://repository.gatech.edu/entities/publication/7d382cd3-6f6d-47e8-961c-671dcb8a26f1
19.
Marshall
,
A.
,
Venkateswaran
,
P.
,
Noble
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Development and Characterization of a Variable Turbulence Generation System
,”
Exp. Fluids
,
51
(
3
), pp.
611
620
.10.1007/s00348-011-1082-6
20.
Ghenai
,
C.
,
Gouldin
,
F. C.
, and
Gökalp
,
I.
,
1998
, “
Mass Flux Measurements for Burning Rate Determination of Premixed Turbulent Flames
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
979
987
.10.1016/S0082-0784(98)80497-9
21.
Chen
,
Y. C.
, and
Bilger
,
R. W.
,
2004
, “
Experimental Investigation of Three-Dimensional Flame-Front Structure in Premixed Turbulent Combustion II. Lean Hydrogen/Air Bunsen Flames
,”
Combust. Flame
,
138
(
1–2
), pp.
155
174
.10.1016/j.combustflame.2004.04.009
22.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, accessed Aug. 30, 2024, https://cantera.org/documentation/release_notes/v3.0.0.html
23.
Smith
,
G. P.
,
Tao
,
Y.
, and
Wang
,
H.
,
2021
, “
Foundational Fuel Chemistry Model Version 1.0 (FFCM-1)
,” accessed Aug. 30, 2024, https://web.stanford.edu/group/haiwanglab/FFCM1/pages/FFCM1.html
24.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2005
, “
Molecular Transport Effects on Turbulent Flame Propagation and Structure
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
1
73
.10.1016/j.pecs.2004.07.001
25.
Damköhler
,
G.
,
1940
, “
Der Einfluss Der Turbulenz Auf Die Flammengeschwindigkeit in Gasgemischen
,”
Z. Elektrochem. Angew. Phys. Chem.
,
46
(
11
), pp.
601
626
.10.1002/bbpc.19400461102
26.
Venkateswaran
,
P.
,
Marshall
,
A.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2015
, “
Scaling Turbulent Flame Speeds of Negative Markstein Length Fuel Blends Using Leading Points Concepts
,”
Combust. Flame
,
162
(
2
), pp.
375
387
.10.1016/j.combustflame.2014.07.028
27.
Kolmogorov
,
A. N.
,
1962
, “
A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number
,”
J. Fluid Mech.
,
13
(
1
), pp.
82
85
.10.1017/S0022112062000518
28.
Andrews
,
G. E.
,
Bradley
,
D.
, and
Lwakabamba
,
S. B.
,
1975
, “
Measurement of Turbulent Burning Velocity for Large Turbulent Reynolds Numbers
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
655
664
.10.1016/S0082-0784(75)80336-5
29.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2002
, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
1
74
.10.1016/S0360-1285(01)00007-7
30.
Kulkarni
,
T.
,
Buttay
,
R.
,
Kasbaoui
,
M. H.
,
Attili
,
A.
, and
Bisetti
,
F.
,
2021
, “
Reynolds Number Scaling of Burning Rates in Spherical Turbulent Premixed Flames
,”
J. Fluid Mech.
,
906
, p.
A2
.10.1017/jfm.2020.784
You do not currently have access to this content.