Abstract

This paper explores two different blisk dynamic models for resonant vibration prediction of a rotating blisk test piece, i.e., the Model-BDTID and geometrically mistuned models (GMM). The former represents a mistuned blisk model with blade mistuning pattern experimentally retrieved by a recently proposed blade mistuning identification method based on blade detuning tests (BDTID). It falls into the scope of the frequency-mistuning modeling approach. The latter refers to a geometrically mistuned model constructed upon high-precision blisk geometry data by leveraging the advanced optical geometry measurement technology. A specifically developed “Sector Mode Assembling Reduction Technique” is exploited for efficient dynamic analyses of the large-sized GMM. Forced response tests are performed in a spinning rig under well-controlled laboratory condition. The blade tip-timing (BTT) technique is employed to give all-blade vibration measurements of the rotating blisk. Correlation results between the forced response predictions to BTT measurements demonstrate that both the Model-BDTID constructed upon the identified blade mistuning of the blisk at rest and the GMM, can predict the resonant vibration of the rotating blisk with satisfactory accuracy.

References

1.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model - Part II: Application
,”
ASME J. Turbomach.
,
126
(
1
), pp.
159
165
.10.1115/1.1643914
2.
Madden
,
A. C.
,
Castanier
,
M. P.
, and
Epureanu
,
B. I.
,
2008
, “
Reduced-Order Model Construction Procedure for Robust Mistuning Identification of Blisks
,”
AIAA J.
,
46
(
11
), pp.
2890
2898
.10.2514/1.37314
3.
Nyssen
,
F.
, and
Golinval
,
J. C.
,
2016
, “
Identification of Mistuning and Model Updating of an Academic Blisk Based on Geometry and Vibration Measurements
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
252
264
.10.1016/j.ymssp.2015.08.006
4.
Eric
,
K.
,
Karsten
,
L.
, and
Kiran
,
D.
,
2020
, “
Mistuning Identification for Rotating Bladed Disks Using Stationary Measurements and Reduced Order Models
,”
ASME
Paper No. DETC2020-22652.10.1115/DETC2020-22652
5.
Chan
,
Y. J.
, and
Ewins
,
D. J.
,
2011
, “
Prediction of Vibration Response Levels of Mistuned Integral Bladed Disks (Blisks): Robustness Studies
,”
ASME J. Turbomach.
,
134
(
4
), p.
044501
.10.1115/1.4003646
6.
Pichot
,
F.
,
Laxalde
,
D.
,
Sinou
,
J. J.
,
Thouverez
,
F.
, and
Lombard
,
J. P.
,
2006
, “
Mistuning Identification for Industrial Blisks Based on the Best Achievable Eigenvector
,”
Comput. Struct.
,
84
(
29–30
), pp.
2033
2049
.10.1016/j.compstruc.2006.08.022
7.
Weber
,
R.
, and
Kühhorn
,
A.
,
2019
, “
Mistuning Identification Approach With Focus on High-Speed Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032507
.10.1115/1.4040999
8.
Beirow
,
B.
,
Kühhorn
,
A.
,
Figaschewsky
,
F.
,
Hönisch
,
P.
,
Giersch
,
T.
, and
Schrape
,
S.
,
2019
, “
Model Update and Validation of a Mistuned High-Pressure Compressor Blisk
,”
Aeronaut. J.
,
123
(
1260
), pp.
230
247
.10.1017/aer.2018.149
9.
Beirow
,
B.
,
Giersch
,
T.
,
Kühhorn
,
A.
, and
Nipkau
,
J.
,
2015
, “
Optimization-Aided Forced Response Analysis of a Mistuned Compressor Blisk
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012504
.10.1115/1.4028095
10.
Lupini
,
A.
,
Shim
,
J.
,
Callan
,
S.
, and
Epureanu
,
B. I.
,
2021
, “
Mistuning Identification Technique Based on Blisk Detuning
,”
AIAA J.
,
59
(
9
), pp.
1
9
.10.2514/1.J060209
11.
Cimpuieru
,
M.
,
Kelly
,
S. T.
,
Lupini
,
A.
,
Keener
,
C.
,
D'Souza
,
K.
, and
Epureanu
,
B. I.
,
2023
, “
Mistuning Identification of Blisks Using Mass Detuning and Influence Coefficients
,”
AIAA J.
,
61
(
8
), pp.
3682
3691
.10.2514/1.J062668
12.
Zhou
,
B.
,
Zhao
,
J.
, and
Berruti
,
T. M.
,
2022
, “
Exploration of Blade Detuning Tests for Mistuning Identification of Blisks
,”
Mech. Syst. Signal Process.
,
175
, p.
109118
.10.1016/j.ymssp.2022.109118
13.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2014
, “
Automated Finite Element Model Mesh Updating Scheme Applicable to Mistuning Analysis
,”
ASME
Paper No. GT2014-26925.10.1115/GT2014-26925
14.
Backhaus
,
T.
,
Maywald
,
T.
,
Schrape
,
S.
,
Voigt
,
M.
, and
Mailach
,
R.
,
2017
, “
A Parametrization Describing Blisk Airfoil Variations Referring to Modal Analysis
,”
ASME
Paper No. GT2017-64243.10.1115/GT2017-64243
15.
Meckstroth
,
C.
, and
Brown
,
J.
,
2019
, “
Point Cloud to Parameter: An Inverse Geometric Approach to Probabilistic Design
,”
ASME
Paper No. GT2019-91652.10.1115/GT2019-91652
16.
Gambitta
,
M.
,
Kühhorn
,
A.
, and
Schrape
,
S.
,
2020
, “
Geometrical Variability Modelling of Axial Compressor Blisk Aerofoils and Evaluation of Impact on the Forced Response Problem
,”
ASME
Paper No. GT2020-16168.10.1115/GT2020-16168
17.
Zhou
,
B.
,
Zhao
,
J.
,
Ye
,
N.
, and
Berruti
,
T. M.
,
2022
, “
Blisk With Small Geometry Mistuning and Blend Repair: As-Measured Finite Element Model and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101017
.10.1115/1.4055363
18.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kühhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
19.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2018
, “
Automated Meshing Algorithm for Generating as-Manufactured Finite Element Models Directly From as-Measured Fan Blades and Integrally Bladed Disks
,”
ASME
Paper No. GT2018-76375.10.1115/GT2018-76375
20.
Carassale
,
L.
,
Cavicchi
,
A.
,
Bruzzone
,
S.
, and
Marrè Brunenghi
,
M.
,
2019
, “
Probabilistic Response of a Bladed Disk With Uncertain Geometry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101024
.10.1115/1.4044642
21.
Kaszynski
,
A.
,
Brown
,
J.
, and
Beck
,
J.
,
2015
, “
Experimental Validation of an Optically Measured Geometric Mistuning Model Using a System id Approach
,”
AIAA
Paper No. 2015-1371.10.2514/6.2015-1371
22.
Gillaugh
,
D. L.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Beck
,
J. A.
, and
Slater
,
J. C.
,
2019
, “
Mistuning Evaluation Comparison Via as-Manufactured Models, Traveling Wave Excitation, and Compressor Rigs
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061006
.10.1115/1.4042079
23.
Gillaugh
,
D. L.
,
Janczewski
,
T. J.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Beck
,
J. A.
, and
Nessler
,
C.
,
2021
, “
Forced Response Variation of a Compressor Utilizing Blade Tip Timing, Strain Gages, and As-Manufactured Finite Element Models
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111023
.10.1115/1.4051358
24.
Battiato
,
G.
,
Firrone
,
C. M.
, and
Berruti
,
T. M.
,
2017
, “
Forced Response of Rotating Bladed Disks: Blade Tip-Timing Measurements
,”
Mech. Syst. Signal Process.
,
85
, pp.
912
926
.10.1016/j.ymssp.2016.09.019
25.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
26.
Zhou
,
B.
,
Zhao
,
J.
,
Ye
,
N.
, and
Berruti
,
T. M.
,
2023
, “
Sector Mode Assembling Reduction Technique for High-Fidelity Blisk Models With Geometry Mistuning
,”
AIAA J.
,
61
(
1
), pp.
406
415
.10.2514/1.J062248
27.
Kharyton
,
V.
,
Gibert
,
C.
,
Blanc
,
L.
, and
Thouverez
,
F.
,
2011
, “
Elements of Dynamic Characterization of a Bladed Disk by Using the Tip-Timing Method Under Vacuum Conditions
,”
ASME
Paper No. GT2011-46435.10.1115/GT2011-46435
28.
Besem
,
F. M.
,
Kielb
,
R. E.
, and
Key
,
N. L.
,
2016
, “
Forced Response Sensitivity of a Mistuned Rotor From an Embedded Compressor Stage
,”
ASME J. Turbomach.
,
138
(
3
), p.
031002
.10.1115/1.4031866
You do not currently have access to this content.