Abstract

Hydrogen is envisioned to be a key decarbonization solution for fossil fuel-dependent power generation and aviation industries. At present, a significant fraction of the generated electrical power is derived from natural gas. As such, the external energy needed for hydrogen generation, often sourced from fossil fuels, results in CO2 emissions, compromising overall carbon neutrality. Instead, the processes of hydrogen generation can be energetically coupled with the combustion process, in situ, to eliminate external energy requirements. To that end, a novel self-decarbonizing combustor (SDC) has been conceptualized, integrating methane pyrolysis with the combustion process that can in principle decarbonize many contemporary power generation technologies. The underpinning methane pyrolysis process enables in situ pre-combustion capture of solid carbon, while simultaneously generating hydrogen. Consequently, CO2 emissions resulting from the combustion of processed, hydrogen-enriched fuel are mitigated. This study provides a comprehensive analysis, delineating the operating principle and the effect of some of the important governing parameters on the performance of the self-decarbonizing combustor. These parameters, including fuel temperature, residence time, pressure, and catalysis, are studied in the context of potentially applying the proposed concept to natural gas-based decarbonized electrical power generation. Investigating fuel chemistry, combustion exhaust, and carbon structure and morphology under varying process parameters enhances our comprehension of the SDC. Additionally, its self-sufficient nature eliminates the need for separate hydrogen production, storage, and transportation infrastructure, highlighting its potential as a scalable and realizable technology.

References

1.
Energy Institute
,
2022
, “
EI Statistical Review of World Energy
,” Energy Institute, London, UK, https://www.energyinst.org/statistical-review/resources-and-data-downloads
2.
IEA
,
2021
, “
CO2 Emissions From Electricity and Heat Production by Fuel, and Share by Fuel, 2000–2021
,” IEA, Paris, France, https://www.iea.org/data-and-statistics/charts/co2-emissions-from-electricity-and-heat-production-by-fuel-and-share-by-fuel-2000-2021
3.
Rennert
,
K.
,
Errickson
,
F.
,
Prest
,
B. C.
,
Rennels
,
L.
,
Newell
,
R. G.
,
Pizer
,
W.
,
Kingdon
,
C.
, et al.,
2022
, “
Comprehensive Evidence Implies a Higher Social Cost of CO2
,”
Nature
,
610
(
7933
), pp.
687
692
.10.1038/s41586-022-05224-9
4.
Yadav
,
S.
, and
Mondal
,
S. S.
,
2022
, “
A Review on the Progress and Prospects of Oxy-Fuel Carbon Capture and Sequestration (CCS) Technology
,”
Fuel
,
308
, p.
122057
.10.1016/j.fuel.2021.122057
5.
Sánchez-Bastardo
,
N.
,
Schlögl
,
R.
, and
Ruland
,
H.
,
2021
, “
Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology From Fossil Fuels to a Renewable and Sustainable Hydrogen Economy
,”
Ind. Eng. Chem. Res.
,
60
(
32
), pp.
11855
11881
.10.1021/acs.iecr.1c01679
6.
Akojwar
,
K. S.
,
Pawar
,
S. A.
, and
Chaudhuri
,
S.
,
2024
, “
Mitigating CO2 Emission From Methane Based Thermal Power With a Self-Decarbonizing Combustor
,”
Proc. Combust. Inst.
,
40
(
1–4
), p.
105689
.10.1016/j.proci.2024.105689
7.
Younessi-Sinaki
,
M.
,
Matida
,
E. A.
, and
H
,
F.
,
2009
, “
Kinetic Model of Homogeneous Thermal Decomposition of Methane and Ethane
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3710
3716
.10.1016/j.ijhydene.2009.03.014
8.
Keipi
,
T.
,
Tolvanen
,
K. E. S.
,
Tolvanen
,
H.
, and
Konttinen
,
J.
,
2016
, “
Thermo-Catalytic Decomposition of Methane: The Effect of Reaction Parameters on Process Design and the Utilization Possibilities of the Produced Carbon
,”
Energy Convers. Manage.
,
126
, pp.
923
934
.10.1016/j.enconman.2016.08.060
9.
Lee
,
J. H.
, and
Trimm
,
D. L.
,
1995
, “
Catalytic Combustion of Methane
,”
Fuel Process. Technol.
,
42
(
2–3
), pp.
339
359
.10.1016/0378-3820(94)00091-7
10.
Schneider
,
S.
,
Bajohr
,
S.
,
Graf
,
F.
, and
Kolb
,
T.
,
2020
, “
State of the Art of Hydrogen Production Via Pyrolysis of Natural Gas
,”
ChemBioEng Rev.
,
7
(
5
), pp.
150
158
.10.1002/cben.202000014
11.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2023
,
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
National Institute of Standards and Technology
,
Gaithersburg, MD
, p.
20899
.
12.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Meeks
,
E.
, and
Miller
,
J. A.
,
1996
, “
CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics
,”
Sandia National Lab.(SNL-CA)
,
Livermore, CA, Report No. SAND-96-8216
.
13.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
, et al.,
1999
, “
GRI 3.0 Mechanism
,” University of California, Berkeley, Berkeley, CA, accessed Aug. 31, 2024, http://www.me.berkeley.edu/gri_mech
14.
Breer
,
B.
,
Rajagopalan
,
H.
,
Godbold
,
C.
,
Johnson
,
H.
, II
,
Emerson
,
B.
,
Acharya
,
V.
,
Sun
,
W.
,
Noble
,
D.
, and
Lieuwen
,
T.
,
2023
, “
Numerical Investigation of NOx Production From Premixed Hydrogen/Methane Fuel Blends
,”
Combust. Flame
,
255
, p.
112920
.10.1016/j.combustflame.2023.112920
15.
Dennis
,
R.
, Long III, H. A. and
Jesionowski
,
G.
,
2024
, “
A Literature Review of NOx Emissions in Current and Future State-of-the-Art Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
, 146(3), p.
030801
.10.1115/1.4063836
16.
Gilbert
,
T.
,
Menon
,
A. K.
,
Dames
,
C.
, and
Prasher
,
R.
,
2023
, “
Heat Source and Application-Dependent Levelized Cost of Decarbonized Heat
,”
Joule
,
7
(
1
), pp.
128
149
.10.1016/j.joule.2022.11.006
17.
Groenewald
,
R. E.
,
Hughes
,
K. J.
,
Kokonaski
,
W.
,
Mankin
,
M. N.
,
Pan
,
T. S.
,
Wood
,
L. L.
,
Lorr
,
J. J.
, et al.,
2022
, “
Combined Combustion and Pyrolysis Reactors for Hydrogen Production, and Associated Systems and Methods
,” U.S. Patent No. 17/832,516.
18.
Edwards
,
T.
,
2006
, “
Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels
,”
Combust. Sci. Technol.
,
178
(
1–3
), pp.
307
334
.10.1080/00102200500294346
19.
Wang
,
H.
,
2011
, “
Formation of Nascent Soot and Other Condensed-Phase Materials in Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
41
67
.10.1016/j.proci.2010.09.009
20.
Johansson
,
K. O.
,
Head-Gordon
,
M. P.
,
Schrader
,
P. E.
,
Wilson
,
K. R.
, and
Michelsen
,
H. A.
,
2018
, “
Resonance-Stabilized Hydrocarbon-Radical Chain Reactions May Explain Soot Inception and Growth
,”
Science
,
361
(
6406
), pp.
997
1000
.10.1126/science.aat3417
21.
Heinrich
,
H.
,
2008
, “
High-Resolution Transmission Electron Microscopy for Nanocharacterization
,”
Functional Nanostructures: Processing, Characterization, and Applications
,
Springer
, New York, pp.
414
503
.
22.
Khodabakhshi
,
S.
,
Fulvio
,
P. F.
, and
Andreoli
,
E.
,
2020
, “
Carbon Black Reborn: Structure and Chemistry for Renewable Energy Harnessing
,”
Carbon
,
162
, pp.
604
649
.10.1016/j.carbon.2020.02.058
23.
Singh
,
M.
, and
Vander Wal
,
R. L.
,
2018
, “
Nanostructure Quantification of Carbon Blacks
,”
C
,
5
(
1
), p.
2
.10.3390/c5010002
24.
Muradov
,
N.
, and
Veziroglu
,
T.
,
2008
, “
Green Path From Fossil-Based to Hydrogen Economy: An Overview of Carbon-Neutral Technologies
,”
Int. J. Hydrogen Energy
,
33
(
23
), pp.
6804
6839
.10.1016/j.ijhydene.2008.08.054
25.
Wang
,
K.
,
Xu
,
R.
,
Parise
,
T.
,
Shao
,
J.
,
Movaghar
,
A.
,
Lee
,
D. J.
,
Park
,
J.
, et al.,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry–IV. HyChem Modeling of Combustion Kinetics of a Bio-Derived Jet Fuel and Its Blends With a Conventional Jet A
,”
Combust. Flame
,
198
, pp.
477
489
.10.1016/j.combustflame.2018.07.012
26.
UEIA
,
2022
, “
U.S. Energy Information Administration, Henry Hub Natural Gas Spot Price
,” U. S. Energy Information Administration, Washington DC, accessed Aug. 31, 2024, https://www.eia.gov/dnav/ng/hist/rngwhhdA.htm
You do not currently have access to this content.