Abstract

This study presents an experimental investigation into the turbulent flow characteristics of an unconfined counter-rotating dual swirl burner under external acoustic excitation. Utilizing Schlieren image velocimetry (SIV), we capture the velocity field of the swirling jets. Mean velocity field analysis reveals the upstream propagation of the central recirculation zone within the burner passages. Through proper orthogonal decomposition (POD) analysis on instantaneous axial velocity fields, coherent structures are identified and the impact of different actuation methods on spatial modes is illustrated. Spatial modes of the unforced (natural) flow show the presence of a single and double helical precessing vortex core (PVC) modes at St = 0.53. Low-frequency acoustic actuation (St = 0.46) effectively suppresses the PVC mode, while high-frequency (St = 2) actuation stabilizes it. Broadband excitation of the flow field, however, induces the excitation of both single and double helical PVC modes.

References

1.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.10.1016/S0360-1285(00)00022-8
2.
Iudiciani
,
P.
,
2012
,
Swirl Stabilized Premixed Flame Analysis Using LES and POD
,
Lund University, Lund, Sweden
.
3.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,” ASME
J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.10.1115/1.4029119
4.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
1999
, “
Coherent Structures in Swirling Flows and Their Role in Acoustic Combustion Control
,”
Phys. Fluids
,
11
(
9
), pp.
2667
2678
.10.1063/1.870128
5.
Anacleto
,
P.
,
Fernandes
,
E.
,
Heitor
,
M.
, and
Shtork
,
S.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(
8
), pp.
1369
1388
.10.1080/00102200302354
6.
Valera-Medina
,
A.
,
Syred
,
N.
, and
Griffiths
,
A.
,
2009
, “
Visualisation of Isothermal Large Coherent Structures in a Swirl Burner
,”
Combust. Flame
,
156
(
9
), pp.
1723
1734
.10.1016/j.combustflame.2009.06.014
7.
Feng
,
X.
,
Suo
,
J.
,
Li
,
Q.
, and
Zheng
,
L.
,
2023
, “
Modal Decomposition Study of the Non-Reactive Flow Field in a Dual-Swirl Combustor
,”
Energies
,
16
(
17
), p.
6182
.10.3390/en16176182
8.
Panda
,
J.
, and
McLaughlin
,
D.
,
1994
, “
Experiments on the Instabilities of a Swirling Jet
,”
Phys. Fluids
,
6
(
1
), pp.
263
276
.10.1063/1.868074
9.
Lacarelle
,
A.
,
Faustmann
,
T.
,
Greenblatt
,
D.
,
Paschereit
,
C.
,
Lehmann
,
O.
,
Luchtenburg
,
D.
, and
Noack
,
B.
,
2009
, “
Spatiotemporal Characterization of a Conical Swirler Flow Field Under Strong Forcing
,”
ASME J. Eng. Gas Turbines Power
, 131(3), p.
031504
.10.1115/1.2982139
10.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
11.
Sieber
,
M.
,
Oliver Paschereit
,
C.
, and
Oberleithner
,
K.
,
2017
, “
Advanced Identification of Coherent Structures in Swirl-Stabilized Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021503
.10.1115/1.4034261
12.
Iudiciani
,
P.
, and
Duwig
,
C.
,
2011
, “
Large Eddy Simulation of the Sensitivity of Vortex Breakdown and Flame Stabilisation to Axial Forcing
,”
Flow, Turbul. Combust.
,
86
(
3–4
), pp.
639
666
.10.1007/s10494-011-9327-2
13.
Khalil
,
S.
,
Hourigan
,
K.
, and
Thompson
,
M. C.
,
2006
, “
Response of Unconfined Vortex Breakdown to Axial Pulsing
,”
Phys. Fluids
,
18
(
3
), p. 038102.10.1063/1.2180290
14.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
15.
Alekseenko
,
S. V.
,
Dulin
,
V. M.
,
Kozorezov
,
Y. S.
, and
Markovich
,
D. M.
,
2008
, “
Effect of Axisymmetric Forcing on the Structure of a Swirling Turbulent Jet
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1699
1715
.10.1016/j.ijheatfluidflow.2008.07.005
16.
Wang
,
S.
, and
Yang
,
V.
,
2005
, “
Unsteady Flow Evolution in Swirl Injectors With Radial Entry. ii. external Excitations
,”
Phys. Fluids
,
17
(
4
), p.
045107
.10.1063/1.1874932
17.
Lieuwen
,
T.
, and
Banaszuk
,
A.
,
2005
, “
Background Noise Effects on Combustor Stability
,”
J. Propul. Power
,
21
(
1
), pp.
25
31
.10.2514/1.5549
18.
Bonciolini
,
G.
,
Boujo
,
E.
, and
Noiray
,
N.
,
2017
, “
Output-Only Parameter Identification of a Colored-Noise-Driven Van-Der-Pol Oscillator: Thermoacoustic Instabilities as an Example
,”
Phys. Rev. E
,
95
(
6
), p.
062217
.10.1103/PhysRevE.95.062217
19.
Vishnoi
,
N.
,
Wahi
,
P.
,
Saurabh
,
A.
, and
Kabiraj
,
L.
,
2021
, “
On the Effect of Noise Induced Dynamics on Linear Growth Rates of Oscillations in an Electroacoustic Rijke Tube Simulator
,”
ASME
Paper No. V03AT04A013.10.1115/GT2021-58691
20.
Vishnoi
,
N.
,
Gupta
,
V.
,
Saurabh
,
A.
, and
Kabiraj
,
L.
,
2022
, “
System Parameter Identification of a Colored-Noise-Driven Rijke Tube Simulator
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p. 091017.10.1115/1.4055212
21.
Kabiraj
,
L.
,
Steinert
,
R.
,
Saurabh
,
A.
, and
Paschereit
,
C. O.
,
2015
, “
Coherence Resonance in a Thermoacoustic System
,”
Phys. Rev. E
,
92
(
4
), p.
042909
.10.1103/PhysRevE.92.042909
22.
Townend
,
H. C.
,
1936
, “
A Method of Air Flow Cinematography Capable of Quantitative Analysis
,”
J. Aeronaut. Sci.
,
3
(
10
), pp.
343
352
.10.2514/8.267
23.
Biswas
,
S.
, and
Qiao
,
L.
,
2017
, “
A Comprehensive Statistical Investigation of Schlieren Image Velocimetry (Siv) Using High-Velocity Helium Jet
,”
Exp. Fluids
,
58
(
3
), pp.
1
20
.10.1007/s00348-017-2305-2
24.
Pellessier
,
J. E.
,
Dillon
,
H. E.
, and
Stoltzfus
,
W.
,
2021
, “
Schlieren Flow Visualization and Analysis of Synthetic Jets
,”
Fluids
,
6
(
11
), p.
413
.10.3390/fluids6110413
25.
Fu
,
S.
, and
Wu
,
Y.
,
2001
, “
Detection of Velocity Distribution of a Flow Field Using Sequences of Schlieren Images
,”
Opt. Eng.
,
40
(
8
), pp.
1661
1666
.10.1117/1.1386792
26.
Papamoschou
,
D.
,
1991
, “
Structure of the Compressible Turbulent Shear Layer
,”
AIAA J.
,
29
(
5
), pp.
680
681
.10.2514/3.59935
27.
Jonassen
,
D. R.
,
Settles
,
G. S.
, and
Tronosky
,
M. D.
,
2006
, “
Schlieren “Piv” for Turbulent Flows
,”
Opt. Lasers Eng.
,
44
(
3–4
), pp.
190
207
.10.1016/j.optlaseng.2005.04.004
28.
Hargather
,
M. J.
,
Lawson
,
M. J.
,
Settles
,
G. S.
, and
Weinstein
,
L. M.
,
2011
, “
Seedless Velocimetry Measurements by Schlieren Image Velocimetry
,”
AIAA J.
,
49
(
3
), pp.
611
620
.10.2514/1.J050753
29.
Ozawa
,
Y.
,
Ibuki
,
T.
,
Nonomura
,
T.
,
Suzuki
,
K.
,
Komuro
,
A.
,
Ando
,
A.
, and
Asai
,
K.
,
2020
, “
Single-Pixel Resolution Velocity/Convection Velocity Field of a Supersonic Jet Measured by Particle/Schlieren Image Velocimetry
,”
Exp. Fluids
,
61
(
6
), pp.
1
18
.10.1007/s00348-020-02963-1
30.
Wen
,
X.
,
Zhou
,
K.
,
Liu
,
P.
,
Zhu
,
H.
,
Wang
,
Q.
, and
Liu
,
Y.
,
2021
, “
Schlieren Visualization of Coflow Fluidic Thrust Vectoring Using Sweeping Jets
,”
AIAA J.
,
60
(
1
), pp.
1
10
.10.2514/1.J060805
31.
Machado
,
D. A.
,
de Souza Costa
,
F.
,
de Andrade
,
J. C.
,
Dias
,
G. S.
, and
Fischer
,
G. A. A.
,
2023
, “
Schlieren Image Velocimetry of Swirl Sprays
,”
Flow, Turbul. Combust.
,
110
(
2
), pp.
489
513
.10.1007/s10494-022-00385-z
32.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
,
Springer Science & Business Media
, Springer Berlin Heidelberg, New York.
33.
Peiponen
,
K.-E.
,
Myllylä
,
R.
, and
Priezzhev
,
A. V.
,
2009
,
Optical Measurement Techniques: Innovations for Industry and the Life Sciences
,
Springer
Berlin Heidelberg, New York.
34.
Józsa
,
V.
,
Malý
,
M.
,
Füzesi
,
D.
,
Rácz
,
E.
,
Kardos
,
R. A.
, and
Jedelský
,
J.
,
2023
, “
Schlieren Analysis of Non-Mild Distributed Combustion in a Mixture Temperature-Controlled Burner
,”
Energy
,
273
, p.
127230
.10.1016/j.energy.2023.127230
35.
Berry
,
M. G.
,
Magstadt
,
A.
, and
Glauser
,
M. N.
,
2017
, “
Application of Pod on Time-Resolved Schlieren in Supersonic Multi-Stream Rectangular Jets
,”
Phys. Fluids
,
29
(
2
), p. 020706.10.1063/1.4974518
36.
Mardani
,
A.
,
Asadi
,
B.
, and
Beige
,
A. A.
,
2022
, “
Investigation of Flame Structure and Precessing Vortex Core Instability of a Gas Turbine Model Combustor With Different Swirler Configurations
,”
Phys. Fluids
,
34
(
8
), p.
085129
.10.1063/5.0097430
37.
Shavit
,
U.
,
Lowe
,
R. J.
, and
Steinbuck
,
J. V.
,
2007
, “
Intensity Capping: A Simple Method to Improve Cross-Correlation Piv Results
,”
Exp. Fluids
,
42
(
2
), pp.
225
240
.10.1007/s00348-006-0233-7
38.
Rosenfeld
,
A.
,
1976
,
Digital Picture Processing
,
Academic Press
, Cambridge, MA.
39.
Thielicke
,
W.
, and
Sonntag
,
R.
,
2021
, “
Particle Image Velocimetry for Matlab: Accuracy and Enhanced Algorithms in Pivlab
,”
J. Open Res. Software
,
9
(
1
), p.
12
.10.5334/jors.334
40.
Holmes
,
P.
,
2012
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
, Cambridge, UK.
41.
Huang
,
Y.
, and
Yang
,
V.
,
2005
, “
Effect of Swirl on Combustion Dynamics in a Lean-Premixed Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1775
1782
.10.1016/j.proci.2004.08.237
42.
Chen
,
Z. X.
,
Langella
,
I.
,
Swaminathan
,
N.
,
Stöhr
,
M.
,
Meier
,
W.
, and
Kolla
,
H.
,
2019
, “
Large Eddy Simulation of a Dual Swirl Gas Turbine Combustor: Flame/Flow Structures and Stabilisation Under Thermoacoustically Stable and Unstable Conditions
,”
Combust. Flame
,
203
, pp.
279
300
.10.1016/j.combustflame.2019.02.013
43.
Terhaar
,
S.
,
Ćosić
,
B.
,
Paschereit
,
C.
, and
Oberleithner
,
K.
,
2016
, “
Suppression and Excitation of the Precessing Vortex Core by Acoustic Velocity Fluctuations: An Experimental and Analytical Study
,”
Combust. Flame
,
172
, pp.
234
251
.10.1016/j.combustflame.2016.06.013
44.
Percin
,
M.
,
Vanierschot
,
M.
, and
Oudheusden
,
B. V.
,
2017
, “
Analysis of the Pressure Fields in a Swirling Annular Jet Flow
,”
Exp. Fluids
,
58
(
12
), pp.
1
13
.10.1007/s00348-017-2446-3
45.
Vanierschot
,
M.
,
Percin
,
M.
, and
Van Oudheusden
,
B.
,
2018
, “
Double Helix Vortex Breakdown in a Turbulent Swirling Annular Jet Flow
,”
Phys. Rev. Fluids
,
3
(
3
), p.
034703
.10.1103/PhysRevFluids.3.034703
46.
Vanierschot
,
M.
,
Müller
,
J. S.
,
Sieber
,
M.
,
Percin
,
M.
,
Van Oudheusden
,
B. W.
, and
Oberleithner
,
K.
,
2020
, “
Single-and Double-Helix Vortex Breakdown as Two Dominant Global Modes in Turbulent Swirling Jet Flow
,”
J. Fluid Mech.
,
883
, p.
A31
.10.1017/jfm.2019.872
47.
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
,
Lancien
,
T.
,
Vicquelin
,
R.
, and
Candel
,
S.
,
2021
, “
Investigation of Transient Pvc Dynamics in a Strongly Swirled Spray Flame Using High Speed Planar Laser Imaging of sno2 Microparticles
,”
Combust. Flame
,
225
, pp.
305
319
.10.1016/j.combustflame.2020.11.009
48.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
, pp.
798
828
.10.1017/jfm.2016.103
You do not currently have access to this content.