Abstract

In this study, the organic Rankine cycle (ORC) and hybrid absorption recompression cycle have been modified by the addition of turbine bleeding with regeneration and ejector, making it a unique solar-powered trigeneration system. With this modification, the useful electric power increases by 65 kW due to increased mass flowrate and overall efficiency nearly by 0.7%, and this difference grows as direct normal irradiation (DNI) rises. After identifying these improvements, a parametric study was conducted to determine the optimum value of these operating variables, such as direct normal irradiation, condenser pressure, turbine inlet temperature, and pressure ratio based on the desired outputs and efficiencies of the proposed modified systems. The results indicate that the proposed system is capable of simultaneously generating 315.3 kW of electric power, 1588 kW of heating output, and 501.6 kW of cooling at energy and exergy efficiencies of 80.8% and 25.36%, respectively. Further, in terms of energy one could conclude that only 19.2% of total available energy is getting wasted, but in reality, around 75% of the work potential of the input exergy is getting wasted. The maximum exergy is lost at the solar collector and destructed at heat recovery vapor generator (HRVG), hence requiring careful design to improve their performance. Lastly, an economic analysis of the proposed system has also been conducted, and the payback period is found to be 2.33 years, which ensures its economic viability.

References

1.
Balat
,
M. M. Y. C.
,
2007
, “
Status of Fossil Energy Resources: A Global Perspective
,”
Energy Sources, Part B
,
2
(
1
), pp.
31
47
.10.1080/15567240500400895
2.
Bagade
,
S.
,
Rampure
,
P.
,
Shelar
,
M.
, and
Mahajan
,
S.
,
2019
, “
Trigeneration Systems: A Review
,”
Int. J. Res. Advent Technol.
,
7
(
5
), pp.
38
43
.10.32622/ijrat.75201933
3.
Al-Sulaiman
,
F. A.
,
Hamdullahpur
,
F.
, and
Dincer
,
I.
,
2011
, “
Trigeneration: A Comprehensive Review Based on Prime Movers
,”
Int. J. Energy Res.
,
35
(
3
), pp.
233
258
.10.1002/er.1687
4.
Al Moussawi
,
H.
,
Fardoun
,
F.
, and
Louahlia-Gualous
,
H.
,
2016
, “
Review of Tri-Generation Technologies: Design Evaluation, Optimization, Decision-Making, and Selection Approach
,”
Energy Convers. Manage.
,
120
, pp.
157
196
.10.1016/j.enconman.2016.04.085
5.
Mishra
,
S. K.
,
Sharma
,
A.
,
Verma
,
A. K.
, and
Yadav
,
L.
,
2023
, “
Thermoeconomic Analysis of Novel Vapor Compression-Absorption Multi-Target-Temperature Cascade Refrigeration System
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
4
), p.
041005
.10.1115/1.4056678
6.
Darvish
,
K.
,
Ehyaei
,
M.
,
Atabi
,
F.
, and
Rosen
,
M.
,
2015
, “
Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses
,”
Sustainability
,
7
(
11
), pp.
15362
15383
.10.3390/su71115362
7.
Lampe
,
M.
,
De Servi
,
C.
,
Schilling
,
J.
,
Bardow
,
A.
, and
Colonna
,
P.
,
2019
, “
Toward the Integrated Design of Organic Rankine Cycle Power Plants: A Method for the Simultaneous Optimization of Working Fluid, Thermodynamic Cycle, and Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111009
.10.1115/1.4044380
8.
Baglietto
,
G.
,
Maccarini
,
S.
,
Traverso
,
A.
, and
Bruttini
,
P.
,
2023
, “
Techno-Economic Comparison of Supercritical CO2, Steam, and Organic Rankine Cycles for Waste Heat Recovery Applications
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041021
.10.1115/1.4055727
9.
Camporeale
,
S. M.
,
Ciliberti
,
P. D.
,
Fortunato
,
B.
,
Torresi
,
M.
, and
Pantaleo
,
A. M.
,
2017
, “
Externally Fired Micro-Gas Turbine and Organic Rankine Cycle Bottoming Cycle: Optimal Biomass/Natural Gas Combined Heat and Power Generation Configuration for Residential Energy Demand
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041401
.10.1115/1.4034721
10.
Khaliq
,
A.
,
Mokheimer
,
E. M. A.
, and
Yaqub
,
M.
,
2019
, “
Thermodynamic Investigations on a Novel Solar Powered Trigeneration Energy System
,”
Energy Convers. Manage.
,
188
, pp.
398
413
.10.1016/j.enconman.2019.03.026
11.
Razmi
,
A.
,
Soltani
,
M.
, and
Torabi
,
M.
,
2019
, “
Investigation of an Efficient and Environmentally-Friendly CCHP System Based on CAES, ORC and Compression-Absorption Refrigeration Cycle: Energy and Exergy Analysis
,”
Energy Convers. Manage.
,
195
, pp.
1199
1211
.10.1016/j.enconman.2019.05.065
12.
Riffat
,
S. B.
, and
Wong
,
C. W.
,
1994
, “
Gas-Driven Absorption/Recompression System
,”
Heat Recovery Syst. CHP
,
14
(
2
), pp.
165
171
.10.1016/0890-4332(94)90007-8
13.
Kerme
,
E. D.
,
Orfi
,
J.
,
Fung
,
A. S.
,
Salilih
,
E. M.
,
Khan
,
S. U.-D.
,
Alshehri
,
H.
,
Ali
,
E.
, and
Alrasheed
,
M.
,
2020
, “
Energetic and Exergetic Performance Analysis of a Solar Driven Power, Desalination and Cooling Poly-Generation System
,”
Energy
,
196
, p.
117150
.10.1016/j.energy.2020.117150
14.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M.
,
2021
, “
Energy and Exergy Performance Comparative Analysis of a Solar-Driven Organic Rankine Cycle Using Different Organic Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102107
.10.1115/1.4050343
15.
Garousi Farshi
,
L.
,
Mosaffa
,
A. H.
,
Infante Ferreira
,
C. A.
, and
Rosen
,
M. A.
,
2014
, “
Thermodynamic Analysis and Comparison of Combined Ejector–Absorption and Single Effect Absorption Refrigeration Systems
,”
Appl. Energy
,
133
, pp.
335
346
.10.1016/j.apenergy.2014.07.102
16.
Safarian
,
S.
, and
Aramoun
,
F.
,
2015
, “
Energy and Exergy Assessments of Modified Organic Rankine Cycles (ORCs)
,”
Energy Rep.
,
1
, pp.
1
7
.10.1016/j.egyr.2014.10.003
17.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2011
, “
Exergy Modeling of a New Solar Driven Trigeneration System
,”
Sol. Energy
,
85
(
9
), pp.
2228
2243
.10.1016/j.solener.2011.06.009
18.
Tzivanidis
,
C.
, and
Bellos
,
E.
,
2019
, “
Energetic, Exergetic, and Financial Investigation of Biomass-Driven Trigeneration System
,”
J. Energy Eng.
,
145
(
6
), p.
04019020
.10.1061/(ASCE)EY.1943-7897.0000622
19.
You
,
D.
,
Tatli
,
A. E.
,
Ghanavati
,
A.
, and
Metghalchi
,
H.
,
2021
, “
Design and Analysis of a Solar Energy Driven Tri-Generation Plant for Power, Heating, and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082105
.10.1115/1.4052981
20.
Aryanfar
,
Y.
,
Assad
,
M. E. H.
,
Khosravi
,
A.
,
Atiqure
,
R. S. M.
,
Sharma
,
S.
,
Alcaraz
,
J. L. G.
, and
Alayi
,
R.
,
2022
, “
Energy, Exergy and Economic Analysis of Combined Solar ORC-VCC Power Plant
,”
Int. J. Low-Carbon Technol.
,
17
, pp.
196
205
.10.1093/ijlct/ctab099
21.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2021
, “
Parametric Analysis of a Solar-Driven Trigeneration System With an Organic Rankine Cycle and a Vapor Compression Cycle
,”
Energy Built Environ.
,
2
(
3
), pp.
278
289
.10.1016/j.enbenv.2020.08.004
22.
Temir
,
G.
,
Bilge
,
D.
, and
Emanet
,
O.
,
2004
, “
An Application of Trigeneration and Its Economic Analysis
,”
Energy Sources
,
26
(
9
), pp.
857
867
.10.1080/00908310490465894
23.
Santiago
,
T. S. A.
,
Achiles
,
A. E.
, and
Dangelo
,
J. V. H.
,
2022
, “
Thermodynamic Performance Analysis and Optimization of a Trigeneration System With Different Configurations Applied to a Medium-Sized Hospital
,”
Energy
,
239
, p.
122195
.10.1016/j.energy.2021.122195
24.
Sinha
,
A. A.
,
Ansari
,
M. Z.
,
Shukla
,
A. K.
,
Choudhary
., and
T.
,
Sanjay
,
2023
, “
Comprehensive Review on Integration Strategies and Numerical Modeling of Fuel Cell Hybrid System for Power & Heat Production
,”
Int. J. Hydrogen Energy
,
48
(
86
), pp.
33669
33704
.10.1016/j.ijhydene.2023.05.097
25.
Sinha
,
A. A.
,
Choudhary
,
T.
,
Ansari
., and
M. Z.
,
Sanjay
,
2023
, “
Estimation of Exergy-Based Sustainability Index and Performance Evaluation of a Novel Intercooled Hybrid Gas Turbine System
,”
Int. J. Hydrogen Energy
,
48
(
23
), pp.
8629
8644
.10.1016/j.ijhydene.2022.10.260
26.
Sinha
,
A. A.
,
Saini
,
G.
,
Shukla
,
A. K.
,
Ansari
,
M. Z.
,
Dwivedi
,
G.
,
Choudhary
., and
T.
,
Sanjay
,
2023
, “
A Novel Comparison of Energy-Exergy, and Sustainability Analysis for Biomass-Fueled Solid Oxide Fuel Cell Integrated Gas Turbine Hybrid Configuration
,”
Energy Convers. Manage.
,
283
, p.
116923
.10.1016/j.enconman.2023.116923
27.
Siddiqi
,
M. A.
, and
Atakan
,
B.
,
2012
, “
Alkanes as Fluids in Rankine Cycles in Comparison to Water, Benzene and Toluene
,”
Energy
,
45
(
1
), pp.
256
263
.10.1016/j.energy.2012.06.005
28.
Javed
,
S.
, and
Tiwari
,
A. K.
,
2023
, “
Performance Assessment of Different Organic Rankine Cycle (ORC) Configurations Driven by Solar Energy
,”
Process Saf. Environ. Prot.
,
171
, pp.
655
666
.10.1016/j.psep.2023.01.039
You do not currently have access to this content.