Abstract

Novel low swirl concepts provide a promising approach to ensure stable flame anchoring over an extensive operation condition range, necessary for optimizing compact designs for liquid fuel combustors as used in hybrid aero-engine or microgas turbines (MGTs) in terms of scalability and flexibility. This study utilizes seven different additive manufactured low swirler integrated into a dual airblast injection concept to delineate the influence of high momentum swirling air jet on spray atomization and combustion performance. The developed injector is designed for vane angles from 0° to 45° for co- and counterdirection against the orientation of the liquid sheet ejected from the prefilming pressure swirl (PS) injector. The spray atomization in swirl afflicted air jet is demonstrated by phase Doppler interferometry and shadowgraphy. The combustion process is analyzed using OH∗-chemiluminescence (CL) imaging and emission measurements. The results show that a circumferential gaseous flow acting on the wall-film amplifies the radial fuel penetration and atomization. The latter produces robust spray dispersion in response to variations of operational conditions. The effect of low swirl injection on combustion process of kerosene flames leads to a noticeably more compact and intensified heat release zone. In addition, nonmonotonic decomposed mode of energy with considerable NOx reduction is observed.

References

1.
Moliére
,
M.
,
2023
, “
The Fuel Flexibility of Gas Turbines: A Review and Retrospective Outlook
,”
Energies
,
16
, p.
3962
.10.3390/en16093962
2.
Huth
,
M.
, and
Heilos
,
A.
,
2013
, “
Fuel Flexibility in Gas Turbine Systems: Impact on Burner Design and Performance
,”
Modern Gas Turbine Systems
,
Y.
Sakai
, and
C.
Vassilicos
, eds.,
Woodhead Publishing
, Cambridge, UK.
3.
Gupta
,
K.
,
Rehman
,
A.
, and
Sarviya
,
R.
,
2010
, “
Bio-Fuels for the Gas Turbine: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2946
2955
.10.1016/j.rser.2010.07.025
4.
Weerakoon
,
A. H. S.
, and
Assadi
,
M.
,
2023
, “
Trends and Advances in Micro Gas Turbine Technology for Sustainable Energy Solutions: A Detailed Review
,”
Energy Convers. Manage.: X
,
20
, p. 100483.10.1016/j.ecmx.2023.100483
5.
Lammel
,
O.
,
Severin
,
M.
,
Ax
,
H.
,
Lückerath
,
R.
,
Tomasello
,
A.
,
Emmi
,
Y.
,
Noll
,
B.
,
Aigner
,
M.
, and
Panek
,
L.
,
2017
, “
High Momentum Jet Flames at Elevated Pressure, A: Experimental and Numerical Investigation for Different Fuels
,”
ASME
Paper No. GT2017-64615.10.1115/GT2017-64615
6.
Hampp
,
F.
,
Gounder
,
J. D.
,
Ax
,
H.
,
Lückerath
,
R.
,
Lammel
,
O.
,
Hase
,
M.
, and
Janus
,
B.
,
2020
, “
High Momentum Jet Flames at Elevated Pressure, E: Quantification of Droplet Size Distribution and Transport
,”
ASME
Paper No. GT2020-14619.10.1115/GT2020-14619
7.
Hampp
,
F.
,
Schäfer
,
D.
, and
Lammel
,
O.
,
2023
, “
Spray Flame Characterization of a Duel Injector for Compact Combustion Systems
,”
Combust. Sci. Technol.
, pp.
1
34
.10.1080/00102202.2023.2249222
8.
Banihabib
,
R.
,
Lingstädt
,
T.
,
Wersland
,
M.
,
Kutne
,
P.
, and
Assadi
,
M.
,
2024
, “
Development and Testing of a 100 kW Fuel-Flexible Micro Gas Turbine Running on 100% Hydrogen
,”
Int. J. Hydrogen Energy
,
49
, pp.
92
111
.10.1016/j.ijhydene.2023.06.317
9.
Gunasekar
,
P.
,
Manigandan
,
S.
, and
Praveen Kumar
,
T. R.
,
2021
, “
Hydrogen as the Futuristic Fuel for the Aviation and Aerospace Industry—Review
,”
Aircr. Eng. Aerosp. Technol.
,
93
(
3
), pp.
410
416
.10.1108/AEAT-07-2020-0145
10.
Schäfer
,
D.
,
Hampp
,
F.
,
Lammel
,
O.
, and
Aigner
,
M.
,
2020
, “
Investigation of Spray Formation and Turbulent Droplet Transport in High Momentum Jet Stabilized Combustor Injection Systems
,”
ASME
Paper No. GT2020-15231.10.1115/GT2020-15231
11.
Petry
,
N.
,
Schäfer
,
D.
,
Lammel
,
O.
, and
Hampp
,
F.
,
2022
, “
Quantification of Coflow Effects on Primary Atomization of Pressure Swirl Atomizers
,”
Int. J. Multiphase Flow
,
149
, p.
103946
.10.1016/j.ijmultiphaseflow.2021.103946
12.
3D Printing Industry,
2024
, “
GE Aerospace to Scale the Production 3D Printed Jet Engines With $650 Million Investment
,” 3D Printing Industry, accessed July 26, 2024, https://3dprintingindustry.com/news/ge-aerospace-to-scale-the-production-3d-printed-jet-engines-with-650-million-investment-228977/
13.
Siemens,
2018
, “
Siemens Achieves Breakthrough With 3D-Printed Combustion Component for SGT-A05
,” Siemens Gas and Power, Orlando, FL, accessed July 26, 2024, https://press.siemens.com/global/en/feature/siemens-achieves-breakthrough-3d-printed-combustion-component-sgt-a05
14.
Giuliani
,
F.
,
Paulitsch
,
N.
,
Cozzi
,
D.
,
Görtler
,
M.
, and
Andracher
,
L.
,
2018
, “
An Assessment on the Benefits of Additive Manufacturing Regarding New Swirler Geometries for Gas Turbine Burners
,”
ASME
Paper No. GT2018-75165.10.1115/GT2018-75165
15.
Crayford
,
A.
,
Lacan
,
F.
,
Runyon
,
J.
,
Bowen
,
P.
,
Balwadkar
,
S.
,
Harper
,
J.
, and
Pugh
,
D.
,
2019
, “
Manufacture, Characterization and Stability Limits of an AM Prefilming Air-Blast Atomizer
,”
ASME
Paper No. GT2019-91624.10.1115/GT2019-91624
16.
Lorenzetto
,
G. E.
, and
Lefebvre
,
A. H.
,
1977
, “
Measurements of Drop Size on a Plain Jet Airblast Atomizer
,”
AIAA J.
,
15
(
7
), pp.
1006
1010
.10.2514/3.60742
17.
Hardalupas
,
Y.
, and
Whitelaw
,
J. H.
,
1996
, “
Interaction Between Sprays From Multiple Coaxial Airblast Atomizers
,”
ASME J. Fluids Eng.
,
118
(
4
), pp.
762
771
.10.1115/1.2835507
18.
Aigner
,
M.
, and
Wittig
,
S.
,
1998
, “
Swirl and Counterswirl Effects in Prefilming Airblast Atomizers
,”
ASME J. Eng. Gas Turbines Power
,
110
(
1
), pp.
105
110
.10.1115/1.3240072
19.
Gurubaran
,
R. K.
,
Sujith
,
R. I.
, and
Chakravarthy
,
S. R.
,
2008
, “
Characterization of a Prefilming Airblast Atomizer in a Strong Swirl Flowfield
,”
J. Propul. Power
,
24
(
5
), pp.
1124
1132
.10.2514/1.35012
20.
Kang
,
Y.
, and
Hampp
,
F.
,
2023
, “
Experimental Characterisation of Pressure Swirl and Airblast Sprays in Multiscale Turbulence
,”
ILASS-Europe
,
32
, Napoli, Italy.
21.
Chuanyu
,
F.
,
Yushuai
,
L.
,
Shaolin
,
W.
,
Cunxi
,
L.
,
Fuqiang
,
L.
,
Jinhu
,
Y.
,
Kaixing
,
W.
,
Yong
,
M.
,
Gang
,
X.
, and
Junqiang
,
Z.
,
2023
, “
Aerodynamic Effect on Atomization Characteristics in a Swirl Cup Airblast Fuel Injector
,”
Phys. Fluids
,
35
(
10
), p.
103319
.10.1063/5.0170317
22.
Cheng
,
R. K.
,
2006
, “Low Swirl Combustion,”
The Gas Turbine Handbook
, DOE, Washington, DC.
23.
Cheng
,
R.
,
Littlejohn
,
D.
,
Nazeer
,
W.
, and
Smith
,
K.
,
2008
, “
Laboratory Studies of the Flow Field Characteristics of Low-Swirl Injectors for Application to Fuel-Flexible Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
021501
.10.1115/1.2795786
24.
Therkelsen
,
P. L.
,
Littlejohn
,
D.
, and
Cheng
,
R. K.
,
2012
, “
Parametric Study of Low-Swirl Injector Geometry on Its Operability
,”
ASME
Paper No. GT2012-68436.10.1115/GT2012-68436
25.
Nogenmyr
,
K.-J.
,
Fureby
,
C.
,
Bai
,
X.
,
Petersson
,
P.
,
Collin
,
R.
, and
Linne
,
M.
,
2009
, “
Large Eddy Simulation and Laser Diagnostic Studies on a Low Swirl Stratified Premixed Flame
,”
Combust. Flame
,
156
(
1
), pp.
25
36
.10.1016/j.combustflame.2008.06.014
26.
Nogenmyr
,
K.-J.
,
Petersson
,
P.
,
Bai
,
X.
,
Fureby
,
C.
,
Collin
,
R.
,
Lantz
,
A.
,
Linne
,
M.
, and
Aldén
,
M.
,
2011
, “
Structure and Stabilization Mechanism of a Stratified Premixed Low Swirl Flame
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1567
1574
.10.1016/j.proci.2010.06.011
27.
Hoffmann
,
S.
,
Koch
,
R.
, and
Bauer
,
H.
,
2021
, “
Numerical Investigation of the Low Swirl Flow in an Aeronautical Combustor With Angular Air Supply
,”
ASME
Paper No. GT2021-59286.10.1115/GT2021-59286
28.
Hoffmann
,
S.
,
Koch
,
R.
, and
Bauer
,
H.
,
2023
, “
Reacting Flow Prediction of the Low Swirl Lifted Flame in an Aeronautical Combustor With Angular Air Supply
,”
ASME
Paper No. GT2023-103459.10.1115/GT2023-103459
29.
Koyama
,
M.
, and
Tachibana
,
S.
,
2013
, “
Technical Applicability of Low-Swirl Fuel Nozzle for Liquid-Fueled Industrial Gas Turbine Combustor
,”
Fuel
,
107
, pp.
766
776
.10.1016/j.fuel.2013.01.038
30.
Khandelwal
,
B.
,
Lili
,
D.
, and
Sethi
,
V.
,
2014
, “
Design and Study on Performance of Axial Swirler for Annular Combustor by Changing Different Design Parameters
,”
J. Energy Inst.
,
87
(
4
), pp.
372
382
.10.1016/j.joei.2014.03.022
31.
Strakey
,
P. A.
,
Talley
,
D. G.
,
Sankar
,
S. V.
, and
Bachalo
,
W. D.
,
2000
, “
Phase-Doppler Interferometry With Probe-to-Droplet Size Ratios Less Than Unity. II. Application of the Technique
,”
Appl. Opt.
,
39
(
22
), pp.
3887
3893
.10.1364/AO.39.003887
32.
Kopp-Vaughan
,
K. M.
, and
Renfro
,
M. W.
,
2012
, “
Flame Shape and Spatially Resolved Rayleigh Criterion Using Proper Orthogonal Decomposition
,”
Int. J. Spray Combust. Dyn.
,
4
(
3
), pp.
255
274
.10.1260/1756-8277.4.3.255
33.
Hardalupas
,
Y.
,
Sahu
,
S.
,
Taylor
,
A. M. K. P.
, and
Zarogoulidis
,
K.
,
2010
, “
Simultaneous Planar Measurement of Droplet Velocity and Size With Gas Phase Velocities in a Spray by Combined ILIDS and PIV Techniques
,”
Exp. Fluids
,
49
(
2
), pp.
417
434
.10.1007/s00348-009-0802-7
34.
Spangelo
,
Ø.
,
2004
, “
Experimental and Theoretical Studies of a Low NOx Swirl Burner
,”
Ph.D. thesis
,
The Norwegian University of Science and Technology
, Trondheim, Norway.http://hdl.handle.net/11250/231210
You do not currently have access to this content.