Abstract

Electric propulsors powered by Proton Exchange Membrane Fuel Cells (PEMFCs) offer a net zero solution to aircraft propulsion. Heat generated by the PEMFCs can be transferred to atmospheric air via a liquid cooling system; however, the cooling system results in parasitic power and adds mass to the propulsion system, thereby affecting system specific power. The design of the cooling system is sensitive to the choice of liquid coolant and so informed coolant selection is required if associated parasitic power and mass are to be minimized. Two approaches to selection of coolants for PEMFC-powered aircraft are presented in this paper for operating temperatures in the range 80–200 °C (this covers low, intermediate, and high temperature PEMFCs). The first approach uses a figure of merit (FoM) alongside minimum and maximum operating temperature requirements. The FoM supports the selection of coolants that minimize pumping power and mass while maximizing heat transfer rate. The second approach uses a cooling system model to select “Pareto efficient” coolants. A hybrid-electric aircraft using a PEMFC stack is used as a representative case study for the two approaches. Hydrocarbon-based coolants are shown to be favorable for the case study considered here (aromatics for PEMFCs operating at <130 °C and aliphatics for PEMFCs operating at >130 °C). As the PEMFC operating temperature increases, the parasitic power and mass of the Thermal Management System (TMS) decreases. Operating at elevated temperatures is therefore beneficial for liquid cooled PEMFC-powered aircraft. Nevertheless, there are diminishing performance gains at higher operating temperatures.

References

1.
International Air Transport Association (IATA)
,
2021
, “
Net-Zero Carbon Emissions by 2050
,”
International Air Transport Association (IATA)
, accessed Dec. 15, 2023, https://www.iata.org/en/pressroom/pressroom-archive/2021-releases/2021-10-04-03/
2.
Raillant-Clark
,
W.
,
2022
, “
States Adopt Net-Zero 2050 Global Aspirational Goal for International Flight Operations
,”
International Civil Aviation Organization (ICAO)
, accessed Dec. 15, 2023, https://www.icao.int/Newsroom/Pages/States-adopts-netzero-2050-aspirational-goal-for-international-flight-operations.aspx
3.
Dahal
,
K.
,
Brynolf
,
S.
,
Xisto
,
C.
,
Hansson
,
J.
,
Grahn
,
M.
,
Grönstedt
,
T.
, and
Lehtveer
,
M.
,
2021
, “
Techno-Economic Review of Alternative Fuels and Propulsion Systems for the Aviation Sector
,”
Renewable Sustainable Energy Rev.
,
151
, p.
111564
.10.1016/j.rser.2021.111564
4.
Meher-Homji
,
C. B.
, and
Prisell
,
E.
,
2000
, “
Pioneering Turbojet Developments of Dr. Hans Von Ohain-From the HeS 1 to the HeS 011
,”
ASME J. Eng. Gas Turbine Power
,
122
(
2
), pp.
191
201
.10.1115/1.483194
5.
Contreras
,
A.
,
1997
, “
Hydrogen as Aviation Fuel: A Comparison With Hydrocarbon Fuels
,”
Int. J. Hydrogen Energy
,
22
(
10–11
), pp.
1053
1060
.10.1016/S0360-3199(97)00008-6
6.
Maurice
,
L. Q.
,
Lander
,
H.
,
Edwards
,
T.
, and
Harrison
,
W. E.
,
2001
, “
Advanced Aviation Fuels: A Look Ahead Via a Historical Perspective
,”
Fuel
,
80
(
5
), pp.
747
756
.10.1016/S0016-2361(00)00142-3
7.
Dukek
,
W.
,
Ogston
,
A.
, and
Winans
,
D.
,
1969
, “
Milestones in Aviation Fuels
,”
AIAA
Paper No.
1969
779
.10.2514/6.1969-779
8.
Schmelcher
,
M.
, and
Häßy
,
J.
,
2022
, “
Hydrogen Fuel Cells for Aviation? A Potential Analysis Comparing Different Thrust Categories
,”
Proceedings of the ISABE
,
Ottawa, ON, Canada
, Sept. 25–30, Paper No.
ISABE-2022-291
.https://elib.dlr.de/188835/1/ISABE_2022_291_full.pdf
9.
Baena Mejías
,
R.
,
Saias
,
C. A.
,
Roumeliotis
,
I.
,
Pachidis
,
V.
, and
Bacic
,
M.
,
2024
, “
Assessment of Hydrogen Gas Turbine-Fuel Cell Powerplant for Rotorcraft
,”
Int. J. Hydrogen Energy
,
50
, pp.
772
783
.10.1016/j.ijhydene.2023.07.076
10.
,
X.
,
Qu
,
Y.
,
Wang
,
Y.
,
Qin
,
C.
, and
Liu
,
G.
,
2018
, “
A Comprehensive Review on Hybrid Power System for PEMFC-HEV: Issues and Strategies
,”
Energy Convers Manage.
,
171
, pp.
1273
1291
.10.1016/j.enconman.2018.06.065
11.
Aerospace Technology Institute (ATI)
,
2022
, “
Fuel Cells Roadmap Report
,” Aerospace Technology Institute, Cranfield, UK, Technical No.
FZO-PPN-COM-0033
.https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-PPN-COM-0033-Fuel-Cells-Roadmap-Report.pdf
12.
Schmidt
,
T. J.
, and
Baurmeister
,
J.
,
2008
, “
Properties of High-Temperature PEFC Celtec®-P 1000 MEAs in Start/Stop Operation Mode
,”
J. Power Sources
,
176
(
2
), pp.
428
434
.10.1016/j.jpowsour.2007.08.055
13.
Whatley
,
K. F.
,
1962
, “
American Airlines Experience With Turbojet/Turbofan Engines
,”
ASME
Paper No. 62-GTP-16.10.1115/62-GTP-16
14.
Agyekum
,
E. B.
,
Ampah
,
J. D.
,
Wilberforce
,
T.
,
Afrane
,
S.
, and
Nutakor
,
C.
,
2022
, “
Research Progress, Trends, and Current State of Development on PEMFC-New Insights From a Bibliometric Analysis and Characteristics of Two Decades of Research Output
,”
Membranes
,
12
(
11
), p.
1103
.10.3390/membranes12111103
15.
Haider
,
R.
,
Wen
,
Y.
,
Ma
,
Z.-F.
,
Wilkinson
,
D. P.
,
Zhang
,
L.
,
Yuan
,
X.
,
Song
,
S.
, and
Zhang
,
J.
,
2021
, “
High Temperature Proton Exchange Membrane Fuel Cells: Progress in Advanced Materials and Key Technologies
,”
Chem. Soc. Rev.
,
50
(
2
), pp.
1138
1187
.10.1039/D0CS00296H
16.
Branco
,
C. M.
,
Sharma
,
S.
,
Madalena de Camargo Forte
,
M.
, and
Steinberger-Wilckens
,
R.
,
2016
, “
New Approaches Towards Novel Composite and Multilayer Membranes for Intermediate Temperature-Polymer Electrolyte Fuel Cells and Direct Methanol Fuel Cells
,”
J. Power Sources
,
316
, pp.
139
159
.10.1016/j.jpowsour.2016.03.052
17.
EU Publications Office
,
2020
, “
Hydrogen-Powered Aviation: A Fact-Based Study of Hydrogen Technology, Economics, and Climate Impact by 2050
,” Fuel Cells and Hydrogen 2 Joint Undertaking, accessed Dec. 15, 2023, https://data.europa.eu/doi/10.2843/471510
18.
Kösters
,
T. L.
,
Liu
,
X.
,
Kožulović
,
D.
,
Wang
,
S.
,
Friedrichs
,
J.
, and
Gao
,
X.
,
2022
, “
Comparison of Phase-Change-Heat-Pump Cooling and Liquid Cooling for PEM Fuel Cells for MW-Level Aviation Propulsion
,”
Int. J. Hydrogen Energy
,
47
(
68
), pp.
29399
29412
.10.1016/j.ijhydene.2022.06.235
19.
Mohapatra
,
S. C.
, and
Loikits
,
D.
,
2005
, “
Advances in Liquid Coolant Technologies for Electronics Cooling
,”
Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium
,
San Jose, CA
, Mar. 15–17, pp.
354
360
.10.1109/STHERM.2005.1412204
20.
Therminol
,
2023
, “
Fluid Selection Resources
,” Therminol, accessed Dec. 15, 2023, https://www.therminol.com/resources/fluid-selection
21.
Dynalene,
2023
, “
Heat Transfer Fluids
,” Dynalene, accessed Dec. 15, 2023, https://www.dynalene.com/heat-transfer-fluids/
22.
Jadeja
,
K. M.
,
Bumataria
,
R.
, and
Chavda
,
N.
,
2023
, “
Nanofluid as a Coolant in Internal Combustion Engine - a Review
,”
Int. J. Ambient Energy
,
44
(
1
), pp.
363
380
.10.1080/01430750.2022.2127891
23.
Zakaria
,
I.
,
Michael
,
Z.
,
Mohamed
,
W. A. N. W.
,
Mamat
,
A. M. I.
,
Azmi
,
W. H.
,
Mamat
,
R.
, and
Saidur
,
R.
,
2015
, “
A Review of Nanofluid Adoption in Polymer Electrolyte Membrane (PEM) Fuel Cells as an Alternative Coolant
,”
J. Mech. Eng. Sci.
,
8
, pp.
1351
1366
.10.15282/jmes.8.2015.10.0132
24.
Yang
,
Y.
,
Oztekin
,
A.
,
Neti
,
S.
, and
Mohapatra
,
S.
,
2012
, “
Particle Agglomeration and Properties of Nanofluids
,”
J. Nanopart. Res.
,
14
(
5
), p.
852
.10.1007/s11051-012-0852-2
25.
Shell
,
2023
, “
Civil Jet Fuel
,” Shell, accessed Dec. 15, 2023, https://www.shell.com/business-customers/aviation/aviation-fuel/civil-jet-fuel-grades.html
26.
Barron
,
S.
,
1952
, “
Low-Temperature Lubrication of Aircraft Engines
,”
SAE
Paper No. 520224.10.4271/520224
27.
European Union Aviation Safety Agency
,
2017
, “
Equivalent Safety Finding on CS 25.981: Fuel Tank Ignition Prevention – A Hot Surface Ignition Temperature
,”
ESF E-33MAX Consultation
.https://www.easa.europa.eu/en/document-library/product-certification-consultations/equivalent-safety-finding-cs-25981-fuel-tank
28.
Federal Aviation Administration
,
2018
, “
Fuel Tank Ignition Source Prevention Guidelines
,” Advisory Circular No. AC 25.981-1D.
29.
Mueller
,
S. A.
,
Kim
,
B. R.
,
Anderson
,
J. E.
,
Kumar
,
M.
, and
Huang
,
C.
,
2023
, “
Leaching of Ions From Fuel Cell Vehicle Cooling System and Their Removal to Maintain Low Conductivity
,”
SAE
Paper No. 2003-01-0802.10.4271/2003-01-0802
30.
Mouromtseff
,
I. E.
,
1942
, “
Water and Forced-Air Cooling of Vacuum Tubes Nonelectronic Problems in Electronic Tubes
,”
Proc. IRE
,
30
(
4
), pp.
190
205
.10.1109/JRPROC.1942.234654
31.
Bonilla
,
C. F.
,
1957
,
Nuclear Engineering
,
McGraw-Hill
,
New York
.
32.
Lenert
,
A.
,
Nam
,
Y.
, and
Wang
,
E. N.
,
2012
, “
Heat Transfer Fluids
,”
Annu. Rev. Heat Transfer
,
15
(
15
), pp.
93
129
.10.1615/AnnualRevHeatTransfer.2012004122
33.
Ehrenpreis
,
C.
,
El Bahi
,
H.
,
Xu
,
H.
,
Roux
,
G.
,
Kneer
,
R.
, and
Rohlfs
,
W.
,
2020
, “
Physically-Motivated Figure of Merit (FOM) Assessing the Cooling Performance of Fluids Suitable for the Direct Cooling of Electrical Components
,”
19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Orlando, FL
, July 21–23, pp.
422
429
.10.1109/ITherm45881.2020.9190343
34.
Ghajar
,
A.
,
Tang
,
W.-C.
, and
Beam
,
J.
,
1994
, “
Comparison of Hydraulic and Thermal Performance of PAO and Coolanol 25R Liquid Coolants
,”
AIAA
Paper No. 1994-1965
.10.2514/6.1994-1965
35.
Green
,
C. E.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
,
2009
, “
Scaling Analysis of Performance Trade-Offs in Electronics Cooling
,”
ASME
Paper No. InterPACK2009-89389.10.1115/InterPACK2009-89389
36.
White
,
F. M.
,
2021
,
Fluid Mechanics
, 9th ed.,
McGraw-Hill
,
New York
.
37.
Baird
,
D.
, and
Ferentinos
,
J.
,
1998
, “
Application of MIL-C-87252 in F-22 Liquid Cooling System
,”
SAE
Paper No. 981543.10.4271/981543
38.
Dow
,
2023
, “
Lubricants, Heat Transfer and Deicing Fluids
,” Dow, accessed Dec. 15, 2023, https://www.dow.com/en-us/product-technology/pt-lubricants.html
39.
Radco
,
2023
, “
Heat Transfer Fluids
,” Radco, accessed Dec. 15, 2023, https://www.radcoind.com/heat-transfer-fluids/
40.
NIST
,
2023
, “
NIST Chemistry WebBook
,” NIST Standard Reference Database Number 69, accessed Dec. 15, 2023.
41.
Asli
,
M.
,
König
,
P.
,
Sharma
,
D.
,
Pontika
,
E.
,
Huete
,
J.
,
Konda
,
K. R.
,
Mathiazhagan
,
A.
,
Xie
,
T.
,
Höschler
,
K.
, and
Laskaridis
,
P.
,
2024
, “
Thermal Management Challenges in Hybrid-Electric Propulsion Aircraft
,”
Prog. Aerosp. Sci.
,
144
, p.
100967
.10.1016/j.paerosci.2023.100967
42.
Mayhew
,
Y. R.
, and
Rogers
,
G. F. C.
,
2013
,
Thermodynamic and Transport Properties of Fluids: SI Units
, 5th ed.,
Wiley Blackwell
,
Chichester, UK
.
43.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
44.
Churchill
,
S. W.
,
1977
, “
Comprehensive Correlating Equations for Heat, Mass and Momentum Transfer in Fully Developed Flow in Smooth Tubes
,”
Ind. Eng. Chem. Fundam.
,
16
(
1
), pp.
109
116
.10.1021/i160061a021
45.
Eaton,
2023
, “
Engine Fuel Pumps
,” Eaton, accessed Dec. 15, 2023, https://www.eaton.com/Eaton/ProductsServices/Aerospace/Fuel/index.htm
46.
Lukaczyk
,
T. W.
,
Wendroff
,
A. D.
,
Colonno
,
M.
,
Economon
,
T. D.
,
Alonso
,
J. J.
,
Orra
,
T. H.
, and
Ilario
,
C.
,
2015
, “
SUAVE: An Open-Source Environment for Multi-Fidelity Conceptual Vehicle Design
,”
AIAA
Paper No.
2015
3087
.10.2514/6.2015-3087
47.
Sinsay
,
J.
,
Alonso
,
J.
,
Kontinos
,
D.
,
Melton
,
J.
, and
Grabbe
,
S.
,
2012
, “
Air Vehicle Design and Technology Considerations for an Electric VTOL Metro-Regional Public Transportation System
,”
AIAA
Paper No.
2012
5404
.10.2514/6.2012-5404
48.
Meredith
,
F. W.
,
1935
, “
Cooling of Aircraft Engines With Special Reference to Ethylene Glycol Radiators Enclosed Ducts
,”
Report No. 1683.
49.
Drela
,
M.
,
1995
, “
Aerodynamics of Heat Exchangers for High-Altitude Aircraft
,”
13th Applied Aerodynamics Conference
,
Reston, VA
, June
19
22
.
50.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.10.1016/j.ijthermalsci.2006.01.016
51.
Yunus
,
C.
, and
Ghajar
,
A.
,
2020
,
Heat and Mass: Fundamentals and Applications
, 6th ed.,
McGraw-Hill Education
,
New York
.
52.
PowerCell Group, 2023
, Enabling Hydrogen Electric Airplanes,
PowerCell Group
, accessed Dec. 15, 2023, https://powercellgroup.com/segments/aviation/
53.
Barbir
,
F.
,
2005
,
Proton Exchanger Membrane Fuel Cells: Theory and Practice
,
Academic Press
,
Cambridge, MA
.
54.
Bargal
,
M. H. S.
,
Abdelkareem
,
M. A. A.
,
Tao
,
Q.
,
Li
,
J.
,
Shi
,
J.
, and
Wang
,
Y.
,
2020
, “
Liquid Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks: A Detailed Survey
,”
Alexandria Eng. J.
,
59
(
2
), pp.
635
655
.10.1016/j.aej.2020.02.005
55.
Yoshida
,
T.
, and
Kojima
,
K.
,
2015
, “
Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society
,”
Electrochem. Soc. Interface
,
24
(
2
), pp.
45
49
.10.1149/2.F03152if
56.
Hashmi
,
S. M. H.
,
2010
, “
Cooling Strategies for Proton Exchange Membrane Fuel Cell Stacks
,” Ph.D. thesis,
Helmut-Schmidt-Universität
,
Hamburg, Germany
.
57.
Ugbeh-Johnson
,
J.
, and
Carpenter
,
M.
,
2023
, “
The Impact of Sustainable Aviation Fuels on Aircraft Fuel Line Ice Formation and Pump Performance
,”
Aeronaut. J.
,
127
(
1314
), pp.
1287
1307
.10.1017/aer.2023.6
58.
Ugbeh-Johnson
,
J.
,
Carpenter
,
M.
,
Williams
,
C.
,
Pons
,
J.-F.
, and
McLaren
,
D.
,
2022
, “
Complexities Associated With Nucleation of Water and Ice From Jet Fuel in Aircraft Fuel Systems: A Critical Review
,”
Fuel
,
310
, p.
122329
.10.1016/j.fuel.2021.122329
59.
Fly
,
A.
, and
Thring
,
R. H.
,
2016
, “
A Comparison of Evaporative and Liquid Cooling Methods for Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
41
(
32
), pp.
14217
14229
.10.1016/j.ijhydene.2016.06.089
60.
Fronk
,
M. H.
,
Wetter
,
D. L.
,
Masten
,
D. A.
, and
Bosco
,
A.
,
2000
, “
PEM Fuel Cell System Solutions for Transportation
,”
SAE Trans.
,
109
, pp.
212
219
.10.4271/2000-01-0373
61.
Kellermann
,
H.
,
Habermann
,
A. L.
, and
Hornung
,
M.
,
2019
, “
Assessment of Aircraft Surface Heat Exchanger Potential
,”
Aerospace
,
7
(
1
), p.
1
.10.3390/aerospace7010001
62.
Greatrix
,
D. R.
,
2012
,
Powered Flight
, 1st ed.,
Springer
,
London, UK
.
63.
Liu
,
Q.
,
Xu
,
H.
,
Lin
,
Z.
,
Zhu
,
Z.
,
Wang
,
H.
, and
Yuan
,
Y.
,
2023
, “
Experimental Study of the Thermal and Power Performances of a Proton Exchange Membrane Fuel Cell Stack Affected by the Coolant Temperature
,”
Appl. Therm. Eng.
,
225
, p.
120211
.10.1016/j.applthermaleng.2023.120211
64.
Topuz
,
A.
,
Engin
,
T.
,
Erdoğan
,
B.
,
Mert
,
S.
, and
Yeter
,
A.
,
2020
, “
Experimental Investigation of Pressure Drop and Cooling Performance of an Automobile Radiator Using Al2O3-Water+Ethylene Glycol Nanofluid
,”
Heat Mass Transfer
,
56
(
10
), pp.
2923
2937
.10.1007/s00231-020-02916-8
65.
Montgomery
,
D. C.
,
2013
,
Design and Analysis of Experiments
, 8th ed.,
Wiley Inc.
,
Hoboken, NJ
.
66.
Antony
,
J.
,
2003
,
Design of Experiments for Engineers and Scientists
,
Butterworth-Heinemann
,
Oxford, UK
.
67.
Schröder
,
M.
,
Becker
,
F.
, and
Gentner
,
C.
,
2024
, “
Optimal Design of Proton Exchange Membrane Fuel Cell Systems for Regional Aircraft
,”
Energy Convers Manage.
,
308
, p.
118338
.10.1016/j.enconman.2024.118338
68.
Chang
,
Y.-J.
,
Chang
,
W.-J.
,
Li
,
M.-C.
, and
Wang
,
C.-C.
,
2006
, “
An Amendment of the Generalized Friction Correlation for Louver Fin Geometry
,”
Int J. Heat Mass Transfer
,
49
(
21–22
), pp.
4250
4253
.10.1016/j.ijheatmasstransfer.2006.05.011
69.
Chang
,
Y.-J.
, and
Wang
,
C.-C.
,
1997
, “
A Generalized Heat Transfer Correlation for Iouver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
533
544
.10.1016/0017-9310(96)00116-0
70.
Baehr
,
H. D.
, and
Stephan
,
K.
,
2013
,
Heat and Mass Transfer
, 1st ed.,
Springer
,
Heidelberg, Germany
.
You do not currently have access to this content.