Abstract

Laser-induced grating spectroscopy (LIGS) is applied, for the first time, to a swirling nonpremixed hydrogen–air flame in a high-pressure combustion facility. A portable LIGS unit is used to probe 35 different axial and radial locations in the flame, and a new conditioned processing approach based on laminar flame simulation is introduced to infer temperatures from instantaneous LIGS spectra. Thermal and electrostrictive frequencies are used to produce a spatial map of temperatures in the combustor. Temperatures up to 2500 K are measured in this work, which constitute the highest temperatures ever measured using LIGS. Challenges associated with the deployment of the technique in turbulent stratified hydrogen flames are discussed, as are potential measures to overcome them, including the use of data-driven clustering techniques.

References

1.
Bell
,
S. R.
, and
Gupta
,
M.
,
1997
, “
Extension of the Lean Operating Limit for Natural Gas Fueling of a Spark Ignited Engine Using Hydrogen Blending
,”
Combust. Sci. Technol.
,
123
(
1–6
), pp.
23
48
.10.1080/00102209708935620
2.
Schefer
,
R. W.
,
2003
, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1131
1141
.10.1016/S0360-3199(02)00199-4
3.
Halter
,
F.
,
Chauveau
,
C.
, and
Gokalp
,
I.
,
2007
, “
Characterization of the Effects of Hydrogen Addition in Premixed Methane/Air Flames
,”
Int. J. Hydrogen Energy
,
32
(
13
), pp.
2585
2592
.10.1016/j.ijhydene.2006.11.033
4.
Degeneve
,
A.
,
Mirat
,
C.
,
Caudal
,
J.
,
Vicquelin
,
R.
, and
Schuller
,
T.
,
2019
, “
Effects of Swirl on the Stabilization of Non-Premixed Oxygen-Enriched Flames Above Coaxial Injectors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121018
.10.1115/1.4045024
5.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
6.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Palies
,
P.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2012
, “
Progress and Challenges in Swirling Flame Dynamics
,”
C. R. Méc.
,
340
(
11–12
), pp.
758
768
.10.1016/j.crme.2012.10.024
7.
Gaydon
,
A. G.
,
1974
,
The Spectroscopy of Flames
,
Springer Netherlands
,
Dordrecht, The Netherlands
.
8.
Seitzman
,
J. M.
,
Kychakoff
,
G.
, and
Hanson
,
R. K.
,
1985
, “
Instantaneous Temperature Field Measurements Using Planar Laser-Induced Fluorescence
,”
Opt. Lett.
,
10
(
9
), pp.
439
441
.10.1364/OL.10.000439
9.
Barlow
,
R. S.
,
2007
, “
Laser Diagnostics and Their Interplay With Computations to Understand Turbulent Combustion
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
49
75
.10.1016/j.proci.2006.08.122
10.
Fuest
,
F.
,
Barlow
,
R. S.
,
Chen
,
J.-Y.
, and
Dreizler
,
A.
,
2012
, “
Raman/Rayleigh Scattering and CO-LIF Measurements in Laminar and Turbulent Jet Flames of Dimethyl Ether
,”
Combust. Flame
,
159
(
8
), pp.
2533
2562
.10.1016/j.combustflame.2011.11.001
11.
Hanson
,
R. K.
, and
Davidson
,
D. F.
,
2014
, “
Recent Advances in Laser Absorption and Shock Tube Methods for Studies of Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
44
, pp.
103
114
.10.1016/j.pecs.2014.05.001
12.
Goldenstein
,
C. S.
,
Spearrin
,
R. M.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2017
, “
Infrared Laser-Absorption Sensing for Combustion Gases
,”
Prog. Energy Combust. Sci.
,
60
, pp.
132
176
.10.1016/j.pecs.2016.12.002
13.
Daily
,
J. W.
,
1997
, “
Laser Induced Fluorescence Spectroscopy in Flames
,”
Prog. Energy Combust. Sci.
,
23
(
2
), pp.
133
199
.10.1016/S0360-1285(97)00008-7
14.
Dibble
,
R. W.
, and
Hollenbach
,
R. E.
,
1981
, “
Laser Rayleigh Thermometry in Turbulent Flames
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
1489
1499
.10.1016/S0082-0784(81)80151-8
15.
Yuen
,
F. T. C.
, and
Gülder
,
Ö. L.
,
2009
, “
Premixed Turbulent Flame Front Structure Investigation by Rayleigh Scattering in the Thin Reaction Zone Regime
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1747
1754
.10.1016/j.proci.2008.08.005
16.
Skiba
,
A. W.
,
Carter
,
C. D.
,
Hammack
,
S. D.
, and
Driscoll
,
J. F.
,
2022
, “
Premixed Flames Subjected to Extreme Levels of Turbulence Part II: Surface Characteristics and Scalar Dissipation Rates
,”
Combust. Flame
,
239
, p.
111703
.10.1016/j.combustflame.2021.111703
17.
Kaiser
,
S. A.
, and
Frank
,
J. H.
,
2007
, “
Imaging of Dissipative Structures in the Near Field of a Turbulent Non-Premixed Jet Flame
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1515
1523
.10.1016/j.proci.2006.08.043
18.
Roy
,
S.
,
Gord
,
J. R.
, and
Patnaik
,
A. K.
,
2010
, “
Recent Advances in Coherent Anti-Stokes Raman Scattering Spectroscopy: Fundamental Developments and Applications in Reacting Flows
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
280
306
.10.1016/j.pecs.2009.11.001
19.
Stampanoni-Panariello
,
A.
,
Kozlov
,
D. N.
,
Radi
,
P. P.
, and
Hemmerling
,
B.
,
2005
, “
Gas-Phase Diagnostics by Laser-Induced Gratings II. Experiments
,”
Appl. Phys. B
,
81
(
1
), pp.
113
129
.10.1007/s00340-005-1853-y
20.
Stampanoni-Panariello
,
A.
,
Kozlov
,
D. N.
,
Radi
,
P. P.
, and
Hemmerling
,
B.
,
2005
, “
Gas Phase Diagnostics by Laser-Induced Gratings I. Theory
,”
Appl. Phys. B
,
81
(
1
), pp.
101
111
.10.1007/s00340-005-1852-z
21.
Cummings
,
E. B.
,
1994
, “
Laser-Induced Thermal Acoustics: Simple Accurate Gas Measurements
,”
Opt. Lett.
,
19
(
17
), pp.
1361
1363
.10.1364/OL.19.001361
22.
Kiefer
,
J.
, and
Ewart
,
P.
,
2011
, “
Laser Diagnostics and Minor Species Detection in Combustion Using Resonant Four-Wave Mixing
,”
Prog. Energy Combust. Sci.
,
37
(
5
), pp.
525
564
.10.1016/j.pecs.2010.11.001
23.
Gutfleisch
,
M.
,
Shin
,
D. I.
,
Dreier
,
T.
, and
Danehy
,
P. M.
,
2000
, “
Mid-Infrared Laser-Induced Grating Experiments of C2H4 and NH3 From 0.1–2 MPa and 300–800 K
,”
Appl. Phys. B
,
71
(
5
), pp.
673
680
.10.1007/s003400000408
24.
De Domenico
,
F.
,
Guiberti
,
T. F.
,
Hochgreb
,
S.
,
Roberts
,
W. L.
, and
Magnotti
,
G.
,
2019
, “
Temperature and Water Measurements in Flames Using 1064 nm Laser-Induced Grating Spectroscopy (LIGS)
,”
Combust. Flame
,
205
, pp.
336
344
.10.1016/j.combustflame.2019.04.016
25.
Ruchkina
,
M.
,
Hot
,
D.
,
Ding
,
P.
,
Hosseinnia
,
A.
,
Bengtsson
,
P.-E.
,
Li
,
Z.
,
Bood
,
J.
, and
Sahlberg
,
A.-L.
,
2021
, “
Laser-Induced Thermal Grating Spectroscopy Based on Femtosecond Laser Multi-Photon Absorption
,”
Sci. Rep.
,
11
(
1
), p.
9829
.10.1038/s41598-021-89269-2
26.
Sahlberg
,
A.-L.
,
Hot
,
D.
,
Kiefer
,
J.
,
Aldén
,
M.
, and
Li
,
Z.
,
2017
, “
Mid-Infrared Laser-Induced Thermal Grating Spectroscopy in Flames
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4515
4523
.10.1016/j.proci.2016.07.017
27.
Luers
,
A.
,
Salhlberg
,
A.-L.
,
Hochgreb
,
S.
, and
Ewart
,
P.
,
2018
, “
Flame Thermometry Using Laser-Induced-Grating Spectroscopy of Nitric Oxide
,”
Appl. Phys. B
,
124
(
3
), p.
43
.10.1007/s00340-018-6912-2
28.
Hot
,
D.
,
Sahlberg
,
A.-L.
,
Aldén
,
M.
, and
Li
,
Z.
,
2021
, “
Mid-Infrared Laser-Induced Thermal Grating Spectroscopy of Hot Water Lines for Flame Thermometry
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
1885
1893
.10.1016/j.proci.2020.06.289
29.
Weller
,
L.
,
Shah
,
P.
,
Giles
,
A.
,
De Domenico
,
F.
,
Morris
,
S.
,
Williams
,
B. A. O.
, and
Hochgreb
,
S.
,
2023
, “
Spatial Temperature and Water Molar Concentration Measurements Using Thermal and Electrostrictive LIGS During Operation of a Swirl Burner at Pressure
,”
ASME J. Eng. Gas Turbines Power
, 146(5), p.
051021
.10.1115/1.4063865
30.
Shah
,
P.
,
Le Page
,
L. M.
, and
Williams
,
B. A. O.
,
2023
, “
Development and Characterization of PILOT: A Transportable Instrument for Laser-Induced Grating Spectroscopy
,”
Opt. Express
,
31
(
4
), pp.
5872
5881
.10.1364/OE.482477
31.
Runyon
,
J.
,
Marsh
,
R.
,
Bowen
,
P.
,
Pugh
,
D.
,
Giles
,
A.
, and
Morris
,
S.
,
2018
, “
Lean Methane Flame Stability in a Premixed Generic Swirl Burner: Isothermal Flow and Atmospheric Combustion Characterization
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
125
140
.10.1016/j.expthermflusci.2017.11.019
32.
Pugh
,
D.
,
Bowen
,
P.
,
Crayford
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Morris
,
S.
, and
Giles
,
A.
,
2018
, “
Catalytic Influence of Water Vapor on Lean Blow-Off and NOx Reduction for Pressurized Swirling Syngas Flames
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061502
.10.1115/1.4038417
33.
Pugh
,
D.
,
Bowen
,
P.
,
Valera-Medina
,
A.
,
Giles
,
A.
,
Runyon
,
J.
, and
Marsh
,
R.
,
2019
, “
Influence of Steam Addition and Elevated Ambient Conditions on NOx Reduction in a Staged Premixed Swirling NH3/H2 Flame
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5401
5409
.10.1016/j.proci.2018.07.091
34.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.6.0
,” accessed July 30, 2024, https://www.cantera.org
35.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.10.1016/j.pecs.2012.03.004
36.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinet.
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
37.
Ranzi
,
E.
,
Cavallotti
,
C.
,
Cuoci
,
A.
,
Frassoldati
,
A.
,
Pelucchi
,
M.
, and
Faravelli
,
T.
,
2015
, “
New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-Alkanes
,”
Combust. Flame
,
162
(
5
), pp.
1679
1691
.10.1016/j.combustflame.2014.11.030
38.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.https://www.jmlr.org/papers/v12/pedregosa11a.html
39.
Murphy
,
K. P.
,
2022
,
Probabilistic Machine Learning: An Introduction
,
MIT Press
,
Cambridge, MA
.https://mitpress.mit.edu/9780262046824/probabilisticmachine-learning/
You do not currently have access to this content.