Abstract

The growth stresses induced by the thermally grown oxide (TGO) will be amplified at the free-edge site, making the free-edge site a weak part of the thermal barrier coatings (TBCs). In this study, the TBCs failure behavior is investigated based on different TGO morphologies under free edges. The thermomechanical model is established by creating straight lines and simplified sinusoidal curves, respectively. Dynamic TGO growth is realized by the secondary development of the subroutine. The cohesive element is inserted at the top coat (TC)/TGO interface to simulate the delamination. The stress evolution near different TGO morphologies under the influence of the free edge is examined. In addition, the interfacial cracking behavior near the free edge is also explored. The results show that the appearance of the free edge will deteriorate the stress condition in the nearby area, change the preferred cracking area, and induce the earlier failure behavior. The straight line morphology has the most “friendly” stress distribution. The sinusoidal curves have peaks and valleys, and different areas of the TGO shape are different under the influence of the free edge, but all of them have the effect of stress “convergence.” These results can provide significant guidance to develop the next-generation advanced TBCs.

References

1.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.10.1126/science.1068609
2.
Thakare
,
J. G.
,
Pandey
,
C.
,
Mahapatra
,
M. M.
, and
Mulik
,
R. S.
,
2021
, “
Thermal Barrier Coatings—A State of the Art Review
,”
Met. Mater. Int.
,
27
(
7
), pp.
1947
1968
.10.1007/s12540-020-00705-w
3.
Rahimi
,
J.
,
Poursaeidi
,
E.
,
Montakhabi
,
F.
,
Javadi Sigaroodi
,
M. R.
, and
Yousefi Jamalabad
,
Y.
,
2023
, “
Effect of Thermal Spraying Method, Time and Temperature on the Thickness of Thermally Grown Oxide and Lifetime of Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
32
(
8
), pp.
2580
2602
.10.1007/s11666-023-01670-7
4.
Qiao
,
D.
,
Man
,
J.
,
Yan
,
W.
,
Xue
,
B.
,
Bian
,
X.
, and
Zeng
,
W.
,
2023
, “
Comprehensive Understanding of the Effect of TGO Growth Modes on Thermal Barrier Coating Failure Based on a Simulation
,”
Materials
,
17
(
1
), p.
180
.10.3390/ma17010180
5.
Qiao
,
D.
,
Yan
,
W.
,
Zeng
,
W.
,
Man
,
J.
,
Xue
,
B.
, and
Bian
,
X.
,
2023
, “
Mechanical Loading Effect on Stress States and Failure Behavior in Thermal Barrier Coatings
,”
Crystals
,
14
(
1
), p.
2
.10.3390/cryst14010002
6.
Cai
,
Z.
,
Hong
,
H.
,
Peng
,
D.
,
Zhao
,
X.
,
Wang
,
W.
,
Liu
,
Y.
, and
Cao
,
Z.
,
2020
, “
A Numerical Study of the Influence of Interface Morphology on the Stress Behavior in Thermal Barrier Coatings Near an Inclined Film-Cooling Hole
,”
Ceram. Int.
,
46
(
11
), pp.
18142
18150
.10.1016/j.ceramint.2020.04.135
7.
Bäker
,
M.
,
Rösler
,
J.
, and
Heinze
,
G.
,
2005
, “
A Parametric Study of the Stress State of Thermal Barrier Coatings Part II: Cooling Stresses
,”
Acta Mater.
,
53
(
2
), pp.
469
476
.10.1016/j.actamat.2004.10.004
8.
Rösler
,
J.
,
Bäker
,
M.
, and
Aufzug
,
K.
,
2004
, “
A Parametric Study of the Stress State of Thermal Barrier Coatings: Part I: Creep Relaxation
,”
Acta Mater.
,
52
(
16
), pp.
4809
4817
.10.1016/S1359-6454(04)00387-8
9.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
.10.1038/nmat4687
10.
Meng
,
Z.
,
Liu
,
Y.
,
Li
,
Y.
, and
Zhang
,
Y.
,
2021
, “
An Analytical Model for Predicting Residual Stress in TBC-Film Cooling System Considering Non-Uniform Temperature Field
,”
J. Appl. Phys.
,
129
(
13
), p.
135301
.10.1063/5.0045148
11.
Wang
,
Y.
,
Wang
,
C.
,
You
,
Y.
,
Cheng
,
W.
,
Dong
,
M.
,
Zhu
,
Z.
,
Liu
,
J.
,
Wang
,
L.
,
Zhang
,
X.
, and
Wang
,
Y.
,
2023
, “
Analysis on Thermal Stress of Optimized Functionally Graded Coatings During Thermal Shock Based on Finite Element Simulation
,”
Mater. Today Commun.
,
35
, p.
105699
.10.1016/j.mtcomm.2023.105699
12.
Li
,
F. X.
, and
Kang
,
K. J.
,
2013
, “
Deformation and Cracking Near a Hole in an Oxide-Forming Alloy Foil Subjected to Thermal Cycling
,”
Acta Mater.
,
61
(
1
), pp.
385
398
.10.1016/j.actamat.2012.09.077
13.
Hsueh
,
C. H.
,
Luttrell
,
C. R.
,
Lee
,
S.
,
Wu
,
T. C.
, and
Lin
,
H. Y.
,
2006
, “
Interfacial Peeling Moments and Shear Forces at Free Edges of Multilayers Subjected to Thermal Stresses
,”
J. Am. Ceram. Soc.
,
89
(
5
), pp.
1632
1638
.10.1111/j.1551-2916.2006.00924.x
14.
Jiang
,
J.
,
Ma
,
X.
, and
Wang
,
B.
,
2020
, “
Stress Analysis of the Thermal Barrier Coating System Near a Cooling Hole Considering the Free-Edge Effect
,”
Ceram. Int.
,
46
(
1
), pp.
331
342
.10.1016/j.ceramint.2019.08.267
15.
Tao
,
Q.
,
Wang
,
Y.
,
Yang
,
S.
, and
Liu
,
Y.
,
2023
, “
Simulations of Effects of Geometric and Material Parameters on the Interfacial Stress of the Thermal Barrier Coatings With Free Edges
,”
Coatings
,
13
(
8
), p.
1378
.10.3390/coatings13081378
16.
Jiang
,
J.
,
Jiang
,
L.
,
Cai
,
Z.
,
Wang
,
W.
,
Zhao
,
X.
,
Liu
,
Y.
, and
Cao
,
Z.
,
2019
, “
Numerical Stress Analysis of the TBC-Film Cooling System Under Operating Conditions Considering the Effects of Thermal Gradient and TGO Growth
,”
Surf. Coat. Technol.
,
357
, pp.
433
444
.10.1016/j.surfcoat.2018.10.020
17.
Jiang
,
J.
,
Wu
,
D.
,
Wang
,
W.
,
Zhao
,
X.
,
Ma
,
X.
,
Wang
,
B.
, and
Shi
,
H. J.
,
2020
, “
Fracture Behavior of TBCs With Cooling Hole Structure Under Cyclic Thermal Loadings
,”
Ceram. Int.
,
46
(
3
), pp.
3644
3654
.10.1016/j.ceramint.2019.10.084
18.
Kumar
,
V.
, and
Kandasubramanian
,
B.
,
2016
, “
Processing and Design Methodologies for Advanced and Novel Thermal Barrier Coatings for Engineering Applications
,”
Particuology
,
27
, pp.
1
28
.10.1016/j.partic.2016.01.007
19.
Chen
,
L.
,
Yang
,
G. J.
,
Li
,
C. X.
, and
Li
,
C. J.
,
2017
, “
Edge Effect on Crack Patterns in Thermally Sprayed Ceramic Splats
,”
J. Therm. Spray Technol.
,
26
(
3
), pp.
302
314
.10.1007/s11666-016-0505-6
20.
Chen
,
Z.
,
Jia
,
W.
,
Zhao
,
K.
, and
Fang
,
L.
,
2020
, “
Comparison of Stress Evolution Under TGO Growth Simulated by Two Different Methods in Thermal Barrier Coatings
,”
Ceram. Int.
,
46
(
3
), pp.
2915
2922
.10.1016/j.ceramint.2019.09.286
21.
Białas
,
M.
,
2008
, “
Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
202
(
24
), pp.
6002
6010
.10.1016/j.surfcoat.2008.06.178
22.
Ranjbar-Far
,
M.
,
Absi
,
J.
,
Mariaux
,
G.
, and
Dubois
,
F.
,
2010
, “
Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method
,”
Mater. Des.
,
31
(
2
), pp.
772
781
.10.1016/j.matdes.2009.08.005
23.
Rösler
,
J.
,
Bäker
,
M.
, and
Volgmann
,
M.
,
2001
, “
Stress State and Failure Mechanisms of Thermal Barrier Coatings: Role of Creep in Thermally Grown Oxide
,”
Acta Mater.
,
49
(
18
), pp.
3659
3670
.10.1016/S1359-6454(01)00283-X
24.
Cen
,
L.
,
Qin
,
W. Y.
, and
Yu
,
Q. M.
,
2019
, “
Analysis of Interface Delamination in Thermal Barrier Coating System With Axisymmetric Structure Based on Corresponding Normal and Tangential Stresses
,”
Surf. Coat. Technol.
,
358
, pp.
785
795
.10.1016/j.surfcoat.2018.12.008
25.
Wei
,
Z. Y.
,
Cai
,
H. N.
,
Feng
,
R. X.
, and
Zhang
,
H.
,
2019
, “
The Combined Effect of Creep and TGO Growth on the Cracking Driving Force in a Plasma-Sprayed Thermal Barrier System
,”
J. Therm. Spray Technol.
,
28
(
5
), pp.
1000
1016
.10.1007/s11666-019-00873-1
26.
Lv
,
B.
,
Xie
,
H.
,
Xu
,
R.
,
Fan
,
X.
,
Zhang
,
W.
, and
Wang
,
T. J.
,
2016
, “
Effects of Sintering and Mixed Oxide Growth on the Interface Cracking of Air-Plasma-Sprayed Thermal Barrier Coating System at High Temperature
,”
Appl. Surf. Sci.
,
360
, pp.
461
469
.10.1016/j.apsusc.2015.10.037
27.
Ranjbar-Far
,
M.
,
Absi
,
J.
,
Shahidi
,
S.
, and
Mariaux
,
G.
,
2011
, “
Impact of the Non-Homogenous Temperature Distribution and the Coatings Process Modeling on the Thermal Barrier Coatings System
,”
Mater. Des.
,
32
(
2
), pp.
728
735
.10.1016/j.matdes.2010.07.034
28.
Xu
,
T.
,
He
,
M. Y.
, and
Evans
,
A. G.
,
2003
, “
A Numerical Assessment of the Durability of Thermal Barrier Systems That Fail by Ratcheting of the Thermally Grown Oxide
,”
Acta Mater.
,
51
(
13
), pp.
3807
3820
.10.1016/S1359-6454(03)00194-0
29.
Cen
,
L.
,
Qin
,
W. Y.
, and
Yu
,
Q. M.
,
2020
, “
Finite Element Analysis of Interface Undulation and Interface Delamination in the MCrAlY Coating System Under Thermal Cycling: Considering Oxide Thickness and Top-Coat Effects
,”
J. Therm. Spray Technol.
,
29
(
4
), pp.
597
610
.10.1007/s11666-020-01007-8
30.
Jiang
,
J.
,
Wang
,
W.
,
Zhao
,
X.
,
Liu
,
Y.
,
Cao
,
Z.
, and
Xiao
,
P.
,
2018
, “
Numerical Analyses of the Residual Stress and Top Coat Cracking Behavior in Thermal Barrier Coatings Under Cyclic Thermal Loading
,”
Eng. Fract. Mech.
,
196
, pp.
191
205
.10.1016/j.engfracmech.2018.04.031
31.
Song
,
J.
,
Li
,
S.
,
Yang
,
X.
,
Qi
,
H.
, and
Shi
,
D.
,
2018
, “
Numerical Investigation on the Cracking Behaviors of Thermal Barrier Coating System Under Different Thermal Cycle Loading Waveforms
,”
Surf. Coat. Technol.
,
349
, pp.
166
176
.10.1016/j.surfcoat.2018.05.049
32.
Deng
,
H. X.
,
Shi
,
H. J.
,
Yu
,
H. C.
, and
Zhong
,
B.
,
2011
, “
Effect of Heat Treatment at 900 C on Microstructural and Mechanical Properties of Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
205
(
12
), pp.
3621
3630
.10.1016/j.surfcoat.2010.12.042
33.
Song
,
J.
,
Qi
,
H.
,
Shi
,
D.
,
Yang
,
X.
, and
Li
,
S.
,
2019
, “
Effect of Non-Uniform Growth of TGO Layer on Cracking Behaviors in Thermal Barrier Coatings: A Numerical Study
,”
Surf. Coat. Technol.
,
370
, pp.
113
124
.10.1016/j.surfcoat.2019.04.069
You do not currently have access to this content.