Abstract

Hydrogen combustion engines are one of the few possible ways forward to drastically reduce climate impact of aviation. While there is many information about the engine performance of hydrogen combustion engines, it is not clear to which extend each property of the fuel switch effects the engines thermodynamic cycle and component behavior. The basic architecture is identical for both fuels but it is not known to which extend already existing and fully designed components can be used for the new application. In this work, the basic differences between both fuels are presented using a thermodynamic model of simplified turbojet. The archived knowledge is applied to a reference turbofan for an application similar to an Airbus A320 while burning hydrogen. Different effects occurring during the fuel switch, e.g., higher water loading after combustion and lower fuel mass flow, will be looked at separately. A retrofitted engine toward hydrogen combustion will use 1.5% less energy for the same thrust while operating at 60 K lower temperatures. The working line in the compressors will also switch toward higher mass flow rates despite the higher working fluid quality after combustion. Additionally, a new designed turbofan is presented on preliminary level for a constant fan diameter to address the effects of different thrust requirements and has a 3.6% lower specific energy consumption.

References

1.
European Commission
,
2022
, “
Fly the Green Deal: Europe's Vision for Sustainable Aviation
,” Publications Office of the European Union, Luxembourg, 1st edition.
2.
Larsson
,
L.
,
Grönstedt
,
T.
, and
Kyprianidis
,
K. G.
,
2012
, “
Conceptual Design and Mission Analysis for a Geared Turbofan and an Open Rotor Configuration
,”
ASME
Paper No. GT2011-46451.10.1115/GT2011-46451
3.
Seitz
,
A.
,
Nickl
,
M.
,
Troeltsch
,
F.
, and
Ebner
,
K.
,
2022
, “
Initial Assessment of a Fuel Cell—Gas Turbine Hybrid Propulsion Concept
,”
Aerospace
,
9
(
2
), p.
68
.10.3390/aerospace9020068
4.
Verstraete
,
D.
,
2013
, “
Long Range Transport Aircraft Using Hydrogen Fuel
,”
Int. J. Hydrogen Energy
,
38
(
34
), pp.
14824
14831
.10.1016/j.ijhydene.2013.09.021
5.
Tacconi
,
J.
, and
Grech
,
N.
,
2023
, “
Advanced Hydrogen Cycles to Help Decarbonize the Aviation Industry. Part 1: Development of Simulation & Modeling Toolsets
,”
ASME
Paper No. GT2023-103505.10.1115/GT2023-103505
6.
Silberhorn
,
D.
,
Dahlmann
,
K.
,
Görtz
,
A.
,
Linke
,
F.
,
Zanger
,
J.
,
Rauch
,
B.
,
Methling
,
T.
,
Janzer
,
C.
, and
Hartmann
,
J.
,
2022
, “
Climate Impact Reduction Potentials of Synthetic Kerosene and Green Hydrogen Powered Mid-Range Aircraft Concepts
,”
Appl. Sci.
,
12
(
12
), p.
5950
.10.3390/app12125950
7.
Brewer
,
G. D.
,
1991
,
Hydrogen Aircraft Technology
,
CRC
,
Boca Raton, FL
.
8.
Görtz
,
A.
, and
Silberhorn
,
D.
,
2022
, “Thermodynamic Potential of Turbofan Engines With Direct Combustion of Hydrogen,” 33rd Congress of the International Council of the Aeronautical Sciences (
ICAS
), Stockholm, Sweden, Sept.
4
9
.https://www.icas.org/ICAS_ARCHIVE/ICAS2022/data/papers/ICAS2022_0499_paper.pdf
9.
Patrao
,
A. C.
,
Jonsson
,
I.
,
Xisto
,
C.
,
Lundbladh
,
A.
, and
Grönstedt
,
T.
,
2024
, “
Compact Heat Exchangers for Hydrogen-Fueled Aero Engine Intercooling and Recuperation
,”
Appl. Therm. Eng.
,
243
, p.
122538
.10.1016/j.applthermaleng.2024.122538
10.
Capitao Patrao
,
A.
,
Jonsson
,
I.
,
Xisto
,
C.
,
Lundbladh
,
A.
,
Lejon
,
M.
, and
Grönstedt
,
T.
,
2023
, “
The Heat Transfer Potential of Compressor Vanes on a Hydrogen Fueled Turbofan Engine
,”
Appl. Therm. Eng.
,
236
, p.
121722
.10.1016/j.applthermaleng.2023.121722
11.
Jonsson
,
I.
,
Ranman
,
R.
,
Capitao Patrao
,
A.
, and
Xisto
,
C.
,
2022
, “
Effect of Heat Exchanger Integration in Aerodynamic Optimization of an Aggressive S-Duct
,” 33rd Congress of the International Council of the Aeronautical Sciences (
ICAS
), Stockholm, Sweden, Sept.
4
9
.https://research.chalmers.se/publication/532878/file/532878_Fulltext.pdf
12.
Capitao Patrao
,
A.
,
González Lozano
,
B.
,
Jonsson
,
I.
, and
Xisto
,
C.
,
2022
, “
Numerical Modeling of Laminar-Turbulent Transition in an Interconnecting Compressor Duct
,” 33rd Congress of the International Council of the Aeronautical Sciences (
ICAS
), Stockholm, Sweden, Sept.
4
9
.https://research.chalmers.se/publication/535952/file/535952_Fulltext.pdf
13.
Schmitz
,
O.
,
Klingels
,
H.
, and
Kufner
,
P.
,
2021
, “
Aero Engine Concepts Beyond 2030: Part 1—The Steam Injecting and Recovering Aero Engine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021001
.10.1115/1.4048985
14.
Kaiser
,
S.
,
Schmitz
,
O.
,
Ziegler
,
P.
, and
Klingels
,
H.
,
2022
, “
The Water-Enhanced Turbofan as Enabler for Climate-Neutral Aviation
,”
Appl. Sci.
,
12
(
23
), p.
12431
.10.3390/app122312431
15.
Görtz
,
A.
,
Häßy
,
J.
,
Schmelcher
,
M.
, and
El-Soueidan
,
M.
,
2023
, “
Water Enhanced Turbofan: Improved Thermodynamic Cycle Using Hydrogen as Fuel
,”
ASME
Paper No. GT2023-100807.10.1115/GT2023-100807
16.
Miniero
,
L.
,
Pandey
,
K.
,
de Falco
,
G.
,
D'Anna
,
A.
, and
Noiray
,
N.
,
2023
, “
Soot-Free and Low-NO Combustion of Jet A-1 in a Lean Azimuthal Flame (LEAF) Combustor With Hydrogen Injection
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4309
4318
.10.1016/j.proci.2022.08.006
17.
Xin
,
S.
,
He
,
Y.
,
Weng
,
W.
,
Zhu
,
Y.
, and
Wang
,
Z.
,
2024
, “
Effects of Hydrogen on PAH and Soot Formation in Laminar Diffusion Flames of RP-3 Jet Kerosene and Its Surrogate
,”
Fuel
,
358
, p.
130220
.10.1016/j.fuel.2023.130220
18.
Cecere
,
D.
,
Giacomazzi
,
E.
,
Di Nardo
,
A.
, and
Calchetti
,
G.
,
2023
, “
Gas Turbine Combustion Technologies for Hydrogen Blends
,”
Energies
,
16
(
19
), p.
6829
.10.3390/en16196829
19.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
J.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
20.
Westenberg
,
A.
,
2003
, “
Liquid Hydrogen Fuelled Aircraft—System Analysis
,” The European Commission, Brussels, Belgium, Report No. GRD1-1999-10014.
21.
McBride
,
J. B.
,
Gordon
,
S.
, and
Reno
,
A. M.
,
1993
, “
Thermodynamic Data for Fifty Reference Elements
,” National Aeronautics and Space Administration, Glenn Research Center, Washington, DC, Paper No.
3287/Rev1
.https://ntrs.nasa.gov/citations/20010021116
22.
Bräunling
,
W. J.
,
2015
,
Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, ideale und reale Kreisprozesse, Thermische Turbomaschinen, Komponenten, Emissionen und Systeme
, 4th ed.,
VDI-Buch, Springer Berlin Heidelberg
,
Berlin, Heidelberg, Germany
.
23.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
1998
,
Gas Turbine Performance
,
Blackwell Science
,
Oxford, UK
.
24.
Rachner
,
M.
,
1998
, “
Die Stoffeigenschaften von Kerosin Jet A-1
,” German Aerospace Center, Cologne, Germany, Report No. DLR-Mitteilung 98-01.
25.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
26.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Zenodo, SAO/NASA Astrophysics Data System.
27.
Lee
,
C.-M.
, and
Krishna
,
K.
,
1993
, “
Simplified Jet-A Kinetic Mechanism for Combustor Application
,”
AIAA
Paper No. 93-0021.10.2514/6.93-0021
28.
Wolters
,
F.
,
2022
, “
Einfluss alternativer drop-in Flugturbinenkraftstoffe auf das Emissionsverhalten des globalen Luftverkehrs
,” Doctoral dissertation, Ruhr Universität Bochum, Bochum, Germany.
29.
Becker
,
R.
,
Wolters
,
F.
,
Nauroz
,
M.
, and
Otten
,
T.
,
2011
, “
Development of a Gas Turbine Performance Code and Its Application to Preliminary Engine Design
,” Deutscher Luft- und Raumfahrtkongress (
DLRK
), Bremen, Germany, Sept.
27
29
.https://www.researchgate.net/publication/225023906_DEVELOPMENT_OF_A_GAS_TURBINE_PERFORMANCE_CODE_AND_ITS_APPLICATION_TO_PRELIMINARY_ENGINE_DESIGN
30.
Reitenbach
,
S.
,
Krumme
,
A.
,
Behrendt
,
T.
,
Schnös
,
M.
,
Schmidt
,
T.
,
Hönig
,
S.
,
Mischke
,
R.
, and
Mörland
,
E.
,
2019
, “
Design and Application of a Multidisciplinary Predesign Process for Novel Engine Concepts
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011017
.10.1115/1.4040750
31.
Reitenbach
,
S.
,
Vieweg
,
M.
,
Becker
,
R.
,
Hollmann
,
C.
,
Wolters
,
F.
,
Schmeink
,
J.
,
Otten
,
T.
, and
Siggel
,
M.
,
2020
, “
Collaborative Aircraft Engine Preliminary Design Using a Virtual Engine Platform, Part A: Architecture and Methodology
,”
AIAA
Paper No. 2020-0867.10.2514/6.2020-0867
32.
Grieb
,
H.
,
2004
, “
Projektierung
,”
Projektierung von Turboflugtriebwerken
(Technik der Turboflugtriebwerke),
H.
Grieb
, ed.,
Birkhäuser Basel
,
Basel, Switzerland
, pp.
475
778
.
33.
Guha
,
A.
,
2001
, “
Optimum Fan Pressure Ratio for Bypass Engines With Separate or Mixed Exhaust Streams
,”
J. Propul. Power
,
17
(
5
), pp.
1117
1122
.10.2514/2.5852
34.
Häßy
,
J.
, and
Schmeink
,
J.
,
2022
, “
Knowledge-Based Conceptual Design Methods for Geometry and Mass Estimation of Rubber Aero Engines
,”
ICAS
, Stockholm, Sweden, Sept.
4
9
.https://elib.dlr.de/192376/1/ICAS2022_0497_paper.pdf
35.
Häßy
,
J.
,
Bolemant
,
M.
, and
Becker
,
R.-G.
,
2023
, “
An Educated Guess—Predicting Turbomachinery Efficiencies of Aero Engines During Conceptual Design
,”
ASME
Paper No. GT2023-103638.10.1115/GT2023-103638
36.
Plohr
,
M.
,
2015
, “
Anwendungsorientierte Methoden zur Analyse und Modellierung Anwendungsorientierte Methoden zur Analyse und Modellierung des Emissionsverhaltens moderner Triebwerke mit gestuften, mageren Brennkammersysteme auf Basis thermodynamischer Triebwerksmodelle Brennkammersystemen auf Basis thermodynamischer Triebwerksmodelle
,” Doctoral dissertation, Ruhr Universität Bochum, Bochum, Germany.
37.
Adolfo
,
D.
,
Bertini
,
D.
,
Gamannossi
,
A.
, and
Carcasci
,
C.
,
2017
, “
Thermodynamic Analysis of an Aircraft Engine to Estimate Performance and Emissions at LTO Cycle
,”
Energy Procedia
,
126
, pp.
915
922
.10.1016/j.egypro.2017.08.162
38.
Kurzke
,
J.
,
2018
,
Propulsion and Power: An Exploration of Gas Turbine Performance Modeling
,
Springer International Publishing AG
,
Cham, Switzerland
.
You do not currently have access to this content.