Abstract

In the paper, the behavior of wet steam flow is described in three different steam turbines. The first one is the 1100 MW turbine in the nuclear power plant with the pressurized water reactor. The second one is the 660 MW turbine in the fossil fuel power plant with ultrasupercritical steam parameters at the turbine inlet. The last turbine has a nominal output of 34 MW and operates in the municipal waste-to-energy plant. However, this turbine can often also operate even at 2 MW or higher. In all three turbines in the last stage area passages are made for an optical probe to measure steam wetness and primary droplets size, and for a pneumatic probe to determine the pressures, velocities and flow directions. Based on experimentally obtained data, analyses of thermodynamic wetness loss for all three turbines are performed using numerical flow simulations considering equilibrium and nonequilibrium steam. The condensation model that includes the nucleation rate and droplet growth velocity used in ansyscfx is calibrated based on experimentally obtained data. It is evident that the obtained loss patterns depend fundamentally on the turbine type and operating parameters.

References

1.
Hoznedl
,
M.
,
Sedlák
,
K.
,
Mrózek
,
L.
,
Dadáková
,
T.
,
Kubín
,
Z.
, and
Gregor
,
K.
,
2020
, “
Experimental and Numerical Study of Flow and Dynamics on LSB at 34 MW Steam Turbine
,”
ASME
Paper No. GT2020-14280.10.1115/GT2020-14280
2.
Petr
,
V.
, and
Kolovratník
,
M.
,
2014
, “
Wet Steam Energy Loss and Related Baumann Rule in Low Pressure Steam Turbines
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
2
), pp.
206
215
.10.1177/0957650913512314
3.
Watanabe
,
E.
,
Ohyama
,
H.
,
Tsutsumi
,
M.
,
Maruyama
,
T.
, and
Tabata
,
S.
,
2012
, “
Comprehensive Research of Wetness Effects in Steam Turbines
,”
Proceedings of Baumann Centenary Conference
, Cambridge, UK, Sept. 10–11, Paper No. BCC-2012-18.
4.
Grübel
,
M.
,
Starzmann
,
J.
,
Schatz
,
M.
,
Eberle
,
T.
,
Vogt
,
D. M.
, and
Sieverding
,
F.
,
2015
, “
Two-Phase Flow Modelling and Measurements in Low-Pressure Turbines – Part I: Numerical Validation of Wet Steam Models and Turbine Modelling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
042602
.10.1115/1.4028468
5.
Starzmann
,
J.
,
Schatz
,
M.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
, “
Modelling and Validation of Wet Steam Flow in a Low-Pressure Steam Turbine
,”
ASME
Paper No. GT2011-45672.10.1115/GT2011-45672
6.
Chandler
,
K.
,
White
,
A.
, and
Young
,
J.
,
2014
, “
Non-Equilibrium Wet-Steam Calculations of Unsteady Low-Pressure Turbine Flows
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
2
), pp.
143
152
.10.1177/0957650913511802
7.
Moore
,
M. J.
,
Walters
,
P. T.
,
Crane
,
R. I.
, and
Davidson
,
B. J.
,
1973
, “
Predicting the Fog-Drop Size in Wet-Steam Turbines
,”
Proceedings of the IMechE Conference on Heat and Fluid Flow in Steam and Gas Turbine Plant
, Coventry, UK, Apr. 3, pp.
41
49
.https://xueshu.baidu.com/usercenter/paper/show?paperid=13a07f73b176cf5f79e4b768ff58761d
8.
White
,
A. J.
,
Young
,
J. B.
, and
Walters
,
P. T.
,
1996
, “
Experimental Validation of Condensing Flow Theory for a Stationary Cascade of Steam Turbine Blades
,”
Phil. Trans. R. Soc., A
,
354
, pp.
59
88
.10.1098/rsta.1996.0003
9.
Halama
,
J.
,
Hric
,
V.
, and
Pátý
,
M.
,
2016
, “
Numerical Simulation of Non-Equilibrium Condensation of Steam in Turbine Flows
,”
Proceedings of the Wet Steam Conference
, Prague, Czech Republic, Sept. 12–14, Paper No. WSCP16_15.
10.
Dykas
,
S.
, and
Wróblewski
,
W.
,
2012
, “
Numerical Modelling of Steam Condensing Flow in Low and High-Pressure Nozzles
,”.
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6191
6199
.10.1016/j.ijheatmasstransfer.2012.06.041
11.
Tabata
,
S.
,
Segawa
,
K.
,
Takahashi
,
T.
, and
Aoyagi
,
J.
,
2022
, “
Experimental and Numerical Investigations of the Non-Equilibrium Condensation on the Performance and the Flow Pattern in Steam Turbine
,”
ASME
Paper No. GT2022-80191.10.1115/GT2022-80191
12.
Cai
,
X.
,
Ning
,
T.
,
Niu
,
F.
,
Wu
,
G.
, and
Song
,
Y.
,
2009
, “
Investigation of Wet Steam Flow in a 300 MW Direct Air-Cooling Steam Turbine. Part 1: Measurement Principles, Probe, and Wetness
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
5
), pp.
625
634
.10.1243/09576509JPE690
13.
Cai
,
X.
,
Niu
,
F.
,
Li
,
J.
,
Su
,
M.
,
Ning
,
T.
,
Song
,
Y.
, and
Wu
,
G.
,
2010
, “
Investigation of Wet Steam Flow in a 300 MW Direct Air-Cooling Steam Turbine. Part 2: Flow Field and Windage
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
1
), pp.
129
137
.10.1243/09576509JPE811
14.
Jun
,
G.
,
Kolovratník
,
M.
, and
Hoznedl
,
M.
,
2023
, “
Wet Steam Flow in 1100 MW Turbine
,”
Arch. Thermodyn.
,
42
(
3
), pp.
63
85
.10.24425/ather.2021.138110
15.
Luxa
,
M.
,
Safarík
,
P.
,
Synác
,
J.
, and
Rudas
,
B.
,
2013
, “
High-Speed Aerodynamic Investigation of the Midsection of a 48” Rotor Blade for the Last Stage of Steam Turbine
,”
Proceedings of 10th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, ETC10, Lappeenranta, Finland, Apr. 15–19, pp.
15
19
.https://www.euroturbo.eu/publications/proceedings-papers/etc2013-116/
16.
Živný
,
A.
,
Macálka
,
A.
,
Hoznedl
,
M.
,
Sedlák
,
K.
,
Hajšman
,
M.
, and
Kolovratník
,
M.
,
2017
, “
Numerical Investigation and Validation of the 1 090 MW Steam Turbine Exhaust Hood Flow Field
,”
ASME
Paper No. GT2017-63576.10.1115/GT2017-63576
17.
Kolovratník
,
M.
, and
Bartoš
,
O.
,
2014
, “
CTU Optical Probes for Liquid Phase Detection in the 1000 MW Steam Turbine
,”
Proceedings of Experimental Fluid Mechanics 2014, EPJ Web Conference
, Cesky Krumlov, Czech Republic, p.
02035
.https://www.epjconferences.org/articles/epjconf/pdf/2015/11/epjconf_efm2014_02035.pdf
18.
Gyarmathy
,
G.
,
1962
, “
Grundlagen Einer Theorie Der Nassdampfturbine
,” Ph.D. thesis,
ETH Zűrich
,
Zűrich
.
19.
Young
,
J. B.
,
1980
,
Spontaneous Condensation of Steam in Supersonic Nozzles
,
Whittle Laboratory, Cambridge University
,
Cambridge, UK
, p.
8113306Y
.
20.
Petr
,
V.
, and
Kolovratník
,
M.
,
2001
, “
Heterogeneous Effects in the Droplet Nucleation Process in LP Steam Turbines
,”
Proceedings of 4th European Conference on Turbomachinery Flud Dynamics and Thermodynamics
, Firenze, Italy, Mar. 20–23, pp.
783
792
.https://www.tib.eu/en/search/id/BLCP:CN040725805/Heterogeneous-effectsin-the-droplet-nucleation?cHash=413debf2e3599561893b53b1e359e10f
21.
Moore
,
M. J.
,
1976
, “
Gas Dynamics of Wet Steam and Energy Losses in Wet-Steam Turbines
,”
Two-Phase Steam Flow in Turbines and Separators
,
M. J.
Moore
, and
C. H.
Sieverding
, eds.,
Hemisphere
,
Washington
, DC, pp.
59
126
.
You do not currently have access to this content.