Abstract

A chute rim seal cavity has been instrumented with time-resolved and time-averaged pressure transducers as well as a gas concentration measurement system at the Oxford Rotor Facility. The unsteady pressure transducers were unevenly distributed along the circumference generating 15 combinations of angular spacing to conduct a phase analysis. The test operating conditions were modified through different configurations of mainstream flow, a range of rotational speeds and several rates of purge flow to obtain test data in the regimes of rotationally‐driven, pressure-driven, and combined ingestion. The rotating unsteady flow structures within the rim seal cavity were studied through a combination of phase analysis of dynamic pressure signals and inspection of the frequency domain. The introduction of mainstream flow (axial and swirled) increased the overall unsteadiness exciting an additional band of lower frequencies. The phase analysis revealed these were associated with acoustic waves, providing the first experimental evidence of the presence and coexistence of inertial and acoustic waves in the rim seal cavity. The interaction of the inertial and acoustic waves strongly depends on the operating conditions, and may be linked to changes in sealing effectiveness.

References

1.
Bohn
,
D.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No 2000-GT-0284.10.1115/2000-GT-0284
2.
Bohn
,
D.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
1999
, “
Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No 99-GT-248.10.1115/99-GT-248
3.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.10.1115/1.1456461
4.
Roy
,
R. P.
,
Xu
,
G.
,
Feng
,
J.
, and
Kang
,
S.
,
2001
, “
Pressure Field and Main-Stream Gas Ingestion in a Rotor-Stator Disk Cavity
,”
ASME
Paper No 2001-GT-0564.10.1115/2001-GT-0564
5.
Smout
,
P. D.
,
Chew
,
J. W.
, and
Childs
,
P. R. N.
,
2002
, “
ICAS-GT: A European Collaborative Research Programme on Internal Cooling Air Systems for Gas Turbines
,”
ASME
Paper No: 2002-GT-30479.10.1115/2002-GT-30479
6.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.10.1115/1.1772408
7.
Roy
,
R. P.
,
Feng
,
J.
,
Narzary
,
D.
, and
Paolillo
,
R. E.
,
2005
, “
Experiment on Gas Ingestion Through Axial-Flow Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
573
582
.10.1115/1.1850499
8.
Julien
,
S.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Boutet-Blais
,
G.
,
Lapointe
,
S.
,
Caron
,
J. F.
, and
Marini
,
R.
,
2010
, “
Simulations of Flow Ingestion and Related Structures in a Turbine Disk Cavity
,”
ASME
Paper No. GT2010-22729.10.1115/GT2010-22729
9.
Schädler
,
R.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Schmid
,
G.
, and
Voelker
,
S.
,
2017
, “
Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow
,”
ASME J. Turbomach.
,
139
(
1
), p.
011011
.10.1115/1.4034416
10.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.10.1115/1.4023016
11.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D. M.
,
2018
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
, 233(23–24), pp. 7637–7657.10.1177/0954406218784612
12.
Gao
,
F.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2020
, “
Inertial Waves in Turbine Rim Seal Flows
,”
Phys. Rev. Fluids
,
5
(
2
), p.
024802
.10.1103/PhysRevFluids.5.024802
13.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2018
, “
Unsteady Computation of Ingress Through Turbine Rim Seals
,”
ASME
Paper No. GT2018-75321.10.1115/GT2018-75321
14.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Lock
,
G. D.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.10.1115/1.4045148
15.
Town
,
J.
,
Averbach
,
M.
, and
Camci
,
C.
,
2016
, “
Experimental and Numerical Investigation of Unsteady Structures Within the Rim Seal Cavity in the Presence of Purge Mass Flow
,”
ASME
Paper No. GT2016-56500.10.1115/GT2016-56500
16.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.10.1115/1.4034452
17.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchida
,
S.
, (July 19,
2017
, “
A Comparison of Single and Double Lip Rim Seal Geometries
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112601
.10.1115/1.4037027
18.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2018
, “
Large-Eddy Simulation of Turbine Rim Seal Flow
,”
ASME
Paper No. GT2018-75022.10.1115/GT2018-75022
19.
Bru Revert
,
A.
,
Beard
,
P. F.
,
Chew
,
J. W.
, and
Bottenheim
,
S.
,
2021
, “
Performance of a Turbine Rim Seal Subject to Rotationally-Driven and Pressure Driven Ingestion
,”
ASME J. Eng. Gas Turbines Power
, 143(8), p. 081025.10.1115/1.4049858
20.
Bru Revert
,
A.
,
Beard
,
P. F.
, and
Chew
,
J. W.
,
2021
, “
Flow and Ingestion in a Turbine Disc Cavity Under Rotationally-Dominate Conditions
,”
Int. J. Turbomach. Propuls. Power
,
6
(
3
), p.
29
.10.3390/ijtpp6030029
21.
Chew
,
J. W.
,
1991
, “
A Theoretical Study of Ingress for Shrouded Rotating Disc Systems With Radial Outflow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
91
97
.10.1115/1.2927742
You do not currently have access to this content.