Abstract

The diagnostic merits of high-speed (HS) exhaust gas temperature and pressure measurements for indexing engine stability and identifying abnormal combustion cycles are explored through experimental investigations on a low speed, single-cylinder engine. Exhaust temperature and pressure are measured using a fine wire 50 μm thermocouple and a piezoresistive pressure transducer, respectively. Synchronously recorded cylinder pressure data is used to continuously index combustion variations, and then anomalous combustion event detection and engine stability monitoring are attempted using HS exhaust temperature and pressure measurements. Two types of abnormal combustion cycles, namely, misfiring and overload cycles are used to typify low and high intensity anomalous combustion cycles, respectively. The results demonstrate that if suitable cyclic exhaust pressure and temperature metrics are used, anomalous combustion cycles can be identified, and overall combustion variability levels can be indexed. The comparative diagnostic performance of HS measured exhaust pressure and temperature and slow speed measured exhaust temperature are also discussed. A thermodynamic simulation of the engine and the HS thermocouple is used to provide theoretical support for the discussion by comparing measured and simulated “actual” exhaust temperature and identifying the flow, heat transfer, and thermodynamic influences that act as limits to the thermocouple's dynamic performance.

References

1.
Fu
,
X. Q.
,
He
,
B.
,
Q
,
Z. H.
,
Zhang
,
Y.
,
Li
,
Y.
, and
Bai
,
H.
,
2019
, “
The Application of Controlled Auto-Ignition Gasoline Engines-The Challenges and Solutions
,”
SAE
Paper No. 2019-01-0949.10.4271/2019-01-0949
2.
Hohn
,
K.
, and
Nuss-Warren
,
S. R.
,
2021
,
Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines
,
National Gas Machinery Laboratory, Kansas State University
, Manhattan, KS.
3.
Beshouri
,
G.
,
Huschenbett
,
M.
, and
Bothwell
,
S.
,
2016
,
Cylinder Level Sensing and Control on Typical Pipeline Engines
,
Pipeline Research Council International
, Chantilly, VA.
5.
Senecal
,
K.
, and
Leach
,
F.
,
2021
,
Racing Toward Zero: The Untold Story of Driving Green
,
SAE International
, Warrendale, PA.
6.
Bajwa
,
A. U.
,
Patterson
,
M.
, and
Jacobs
,
T. J.
,
2021
, “
Experimental investigation of Scavenging in Two-Stroke Engines Using Continuous CO2 Sampling
,”
Proc. Inst. Mech. Eng., Part D
,
236
(
7
), pp.
1443
1459
.10.1177/09544070211041329
7.
Fang
,
X.
,
Papaioannou
,
N.
,
Leach
,
F.
, and
Davy
,
M. H.
,
2021
, “
On the Application of Artificial Neural Networks for the Prediction of NOx Emissions From a High-Speed Direct Injection Diesel Engine
,”
Int. J. Engine Res.
,
22
(
6
), pp.
1808
1824
.10.1177/1468087420929768
8.
Decker, D., 2005, “
Balancing Large Bore Gas Engines
,”
Gas Machinery Conference
, Phoenix, AZ, Oct. 1–5.https://www.gmrc.org/gmc
9.
Gardiner
,
D. P.
, Allan, W. D., LaViolette, M., and
Bardon
,
M. F.
,
2007
, “
Cycle-by-Cycle Exhaust Temperature Monitoring for Detection of Misfiring and Combustion Instability in Reciprocating Natural Gas Engines
,”
Internal Combustion Engine Division Fall Technical Conference, Charleston, SC, Oct. 14–17, Vol. 48116, pp. 573–578
.
10.
Kar
,
K.
,
Roberts
,
S.
,
Stone
,
R.
,
Oldfield
,
M.
, and
French
,
B.
,
2004
, “
Instantaneous Exhaust Temperature Measurements Using Thermocouple Compensation Techniques
,”
SAE Trans.
,
113
, pp.
652
673
.10.4271/2004-01-1418
11.
Benson
,
R. S.
, and
Brundrett
,
G. W.
,
1962
, “
Development of a Resistance Wire Thermometer for Measuring Transient Temperatures in Exhaust Systems of Internal Combustion Engines
,”
Temp.: Its Meas. Control Sci. Ind.
,
3
(
2
), p.
631
.
12.
Papaioannou
,
N.
,
Leach
,
F.
, and
Davy
,
M.
,
2020
, “
Improving the Uncertainty of Exhaust Gas Temperature Measurements in Internal Combustion Engines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p. 071007.10.1115/1.4047283
13.
Benson
,
R. S.
,
1964
, “
Measurement of Transient Exhaust Temperatures in I.C. engines (Accuracy of Transient Exhaust Temperature Measurements for Internal Combustion Engines, Using Fine Wire Resistance Thermometers)
,”
Engineer
, pp.
377
383
.
14.
Korczewski
,
Z.
,
2016
, “
Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines. Part II Dynamic Measurements
,”
Pol. Maritime Res.
,
23
(
1
), pp.
68
76
.10.1515/pomr-2016-0010
15.
Caton
,
J. A.
, and
Heywood
,
J. B.
,
1981
, “
An Experimental and Analytical Study of Heat Transfer in an Engine Exhaust Port
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
581
595
.10.1016/0017-9310(81)90003-X
16.
Caton
,
J. A.
,
1982
, “
Comparisons of Thermocouple, Time-Averaged and Mass-Averaged Exhaust Gas Temperature for a Spark-Ignition Engine
,”
SAE
Paper No. 820050.10.4271/820050
17.
Papaioannou
,
N.
,
Leach
,
F.
, and
Davy
,
M.
,
2018
, “
Effect of Thermocouple Size on the Measurement of Exhaust Gas Temperature in Internal Combustion Engines
,”
SAE
Paper No. 2018-09-10.10.4271/2018-09-10
18.
Mollenhauer
,
K.
,
1967
, “
Measurement of Instantaneous Gas Temperatures for Determination of the Exhaust Gas Energy of a Supercharged Diesel Engine
,”
SAE
Paper No. 670929.10.4271/670929
19.
Kee
,
R. J.
,
Hung
,
P.
,
Fleck
,
B.
,
Irwin
,
G.
,
Kenny
,
R.
,
Gaynor
,
J.
, and
McLoone
,
S.
,
2006
, “
Fast Response Exhaust Gas Temperature Measurement in IC Engines
,”
SAE
Paper No. 2006-01-1319.10.4271/2006-01-1319
20.
Guardiola
,
C.
,
Olmeda
,
P.
,
Pla
,
B.
, and
Bares
,
P.
,
2017
, “
In-Cylinder Pressure Based Model for Exhaust Temperature Estimation in Internal Combustion Engines
,”
Appl. Therm. Eng.
,
115
, pp.
212
220
.10.1016/j.applthermaleng.2016.12.092
21.
Parlak
,
A.
,
Islamoglu
,
Y.
,
Yasar
,
H.
, and
Egrisogut
,
A.
,
2006
, “
Application of Artificial Neural Network to Predict Specific Fuel Consumption and Exhaust Temperature for a Diesel Engine
,”
Appl. Therm. Eng.
,
26
(
8–9
), pp.
824
828
.10.1016/j.applthermaleng.2005.10.006
22.
Scott
,
B.
,
Willman
,
C.
,
Williams
,
B.
,
Ewart
,
P.
,
Stone
,
R.
, and
Richardson
,
D.
,
2017
, “
In-Cylinder Temperature Measurements Using Laser Induced Grating Spectroscopy and Two-Colour PLIF
,”
SAE Int. J. Engines
,
10
(
4
), pp.
2191
2201
.10.4271/2017-24-0045
23.
Burrows
,
M. C.
,
Shimizu
,
S.
,
Myers
,
P. S.
, and
Uyehara
,
O. A.
,
1961
, “
The measurement of Unburned Gas Temperatures in an Engine by an Infrared Radiation Pyrometer
,”
SAE
Paper No. 610043. 10.4271/610043
24.
Bajwa
,
A. U.
,
Patterson
,
M.
, and
Jacobs
,
T. J.
,
2021
, “
Using gas Dynamic Models to Improve Exhaust System Design for Large-Bore, Two-Stroke Engines
,”
Int. J. Engine Res.
,
22
(
8
), pp.
2622
2638
.10.1177/1468087420944029
25.
Bajwa
,
A. U.
,
2020
, “
Improved Gas Exchange Characterization of Two-Stroke Engines to Develop Robust Emissions Control Systems
,”
Ph.D. dissertation
,
Texas A&M University
,
College Station, TX
.https://hdl.handle.net/1969.1/192891
26.
Bajwa
,
A. U.
,
Mashayekh
,
A.
,
Patterson
,
M.
, and
Jacobs
,
T.
,
2018
, “
Interactions Among 3D, 1D and 0D Models for Natural Gas Fueled Two-Stroke SI Engines
,” Thermo and Fluid Dynamic Processes in Direct Injection Engines (
THIESEL
),
Valencia, Spain
, Sept. 11–14.https://www.academia.edu/es/65599919/Interactions_among_3D_1D_and_0D_Models_for_Natural_Gas_Fueled_Two_Stroke_SI_Engines
27.
Bajwa
,
A. U.
,
Linker
,
T.
,
Patterson
,
M. A.
,
Beshouri
,
G.
, and
Jacobs
,
T. J.
,
2021
, “
Effects of Dilution and Flammability Changes on Mixture Reactivity in a Natural Gas Internal Combustion Engine
,”
Combust. Sci. Technol.
, epub, pp.
1
19
.10.1080/00102202.2021.2019242
28.
Fansler
,
T. D.
, and
Drake
,
M. C.
,
2008
, “
Flow, Mixture Preparation and Combustion in Direct-Injection Two-Stroke Gasoline Engines
,”
Flow and Combustion in Reciprocating Engines
, Chap. 2,
Springer
,
Berlin
, pp.
67
136
.
29.
Wagner
,
R. M.
,
Edwards
,
K. D.
,
Daw
,
C. S.
,
Green
,
J. B.
, Jr.
, and
Bunting
,
B. G.
,
2006
,
On the Nature of Cylic Dispersion in Spark Assisted HCCI Combustion
,
Oak Ridge National Lab
,
Oak Ridge, TN
.
30.
Bajwa
,
A. U.
,
Linker
,
T.
, and
Patterson
,
M. A.
,
2020
, “
A Study of Cyclic Combustion Variations at Lean SI Engine Operation Using High-Speed In-Cylinder CO2 Measurements
,” THIESEL, Valencia, Spain, Sept. 8–11.
31.
Zhou
,
F.
,
Fu
,
J.
,
Shu
,
J.
,
Liu
,
J.
,
Wang
,
S.
, and
Feng
,
R.
,
2016
, “
Numerical Simulation Coupling With Experimental Study on the Non-Uniform of Each Cylinder Gas Exchange and Working Processes of a Multi-Cylinder Gasoline Engine Under Transient Conditions
,”
Energy Convers. Manage.
,
123
, pp.
104
115
.10.1016/j.enconman.2016.06.028
You do not currently have access to this content.