Abstract

Lean combustion is an attractive alternative to limit pollutants levels in order to meet the imposed limitations for the next generation of civil aero-engines. However, its implementation involves important technological questions related to the augmentation of the air dedicated to the combustion process. An effort on the injection system design is required and large eddy simulation (LES) can be a useful tool in order to explore the design of novel concepts. At the state of the art, the validation of LES in high-pressure reactive conditions and in presence of the liquid phase is still limited. This shrinks the understanding and optimization of lean devices. The industrial project PERCEVAL, between Safran Tech and the CORIA laboratory, aims at extending the actual knowhow on lean combustion. Novel optical experimental techniques have been developed at CORIA to gain detailed information on industrial injection systems at high-pressure conditions. Within PERCEVAL, Safran Tech is in charge of the assessment of LES by using the experimental dataset collected at CORIA. In this framework, a novel automatic mesh convergence (AMC) procedure, based on adaptive mesh refinement, has been developed in the YALES2 platform to speed-up the calculation process. In the present paper, the AMC framework is described and then applied on the lean injection system designed at Safran Tech and tested during PERCEVAL. An analysis is carried out to evaluate the interest and gains offered by the AMC framework.

References

1.
Malbois
,
P.
,
Salaun
,
E.
,
Vandel
,
A.
,
Godard
,
G.
,
Cabot
,
G.
,
Renou
,
B.
,
Boukhalfa
,
A. M.
, and
Grisch
,
F.
,
2019
, “
Experimental Investigation of Aerodynamics and Structure of a Swirl-Stabilized Kerosene Spray Flame With Laser Diagnostics
,”
Combust. Flame
,
205
, pp.
109
122
.10.1016/j.combustflame.2019.03.041
2.
Legros
,
S.
,
Brunet
,
C.
,
Domingo-Alvarez
,
P.
,
Malbois
,
P.
,
Salaun
,
E.
,
Godard
,
G.
,
Caceres
,
M.
, et al.,
2021
, “
Combustion for Aircraft Propulsion: Progress in Advanced Laser-Based Diagnostics on High-Pressure Kerosene/Air Flames Produced With low-NOx Fuel Injection Systems
,”
Combust. Flame
,
224
, pp.
273
294
.10.1016/j.combustflame.2020.12.036
3.
Jaravel
,
T.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Bulat
,
G.
,
2017
, “
Large Eddy Simulation of an Industrial Gas Turbine Combustor Using Reduced Chemistry With Accurate Pollutant Prediction
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3817
3825
.10.1016/j.proci.2016.07.027
4.
Esclapez
,
L.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2015
, “
Ignition Probability of a Partially Premixed Burner Using LES
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3133
3141
.10.1016/j.proci.2014.07.040
5.
Tyliszczak
,
A.
,
Cavaliere
,
D. E.
, and
Mastorakos
,
E.
,
2014
, “
LES/CMC of Blow-Off in a Liquid Fueled Swirl Burner
,”
Flow, Turbul. Combust.
,
92
, pp.
237
267
.10.1007/s10494-013-9477-5
6.
Lancien
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2019
, “
Leading Point Behavior During the Ignition of an Annular Combustor With Liquid n-Heptane Injectors
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5021
5029
.10.1016/j.proci.2018.05.160
7.
Jones
,
W. P.
,
Marquis
,
A. J.
, and
Vogiatzaki
,
K.
,
2014
, “
Large-Eddy Simulation of Spray Combustion in a Gas Turbine Combustor
,”
Combust. Flame
,
161
(
1
), pp.
222
239
.10.1016/j.combustflame.2013.07.016
8.
Langella
,
I.
,
Heinze
,
J.
,
Behrendt
,
T.
,
Voigt
,
L.
,
Swaminathan
,
N.
, and
Zedda
,
M.
,
2019
, “
Turbulent Flame Shape Switching at Conditions Relevant for Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011026
.10.1115/1.4044944
9.
Agostinelli
,
P. W.
,
Rochette
,
B.
,
Laera
,
D.
,
Dombard
,
J.
,
Cuenot
,
B.
, and
Gicquel
,
L.
,
2021
, “
Static Mesh Adaptation for Reliable Large Eddy Simulation of Turbulent Reacting Flows
,”
Phys. Fluids
,
33
(
3
), p.
035141
.10.1063/5.0040719
10.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T. J.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
,
155
(
1–2
), pp.
196
214
.10.1016/j.combustflame.2008.04.013
11.
Toosi
,
S.
, and
Larsson
,
J.
,
2017
, “
Anisotropic Grid-Adaptation in Large Eddy Simulations
,”
Comput. Fluids
,
156
, pp.
146
161
.10.1016/j.compfluid.2017.07.006
12.
Daviller
,
G.
,
Brebion
,
M.
,
Xavier
,
P.
,
Staffelbach
,
G.
,
Muller
,
J.-D.
, and
Poinsot
,
T.
,
2017
, “
A Mesh Adaptation Strategy to Predict Pressure Losses in LES of Swirled Flows
,”
Flow, Turbul. Combust.
, 99, pp.
93
118
.10.1007/s10494-017-9808-z
13.
Odier
,
N.
,
Thacker
,
A.
,
Harnieh
,
M.
,
Staffelbach
,
G.
,
Gicquel
,
L.
,
Duchaine
,
F.
,
Garcìa Rosa
,
N.
, and
Müller
,
J.-D.
,
2021
, “
A Mesh Adaptation Strategy for Complex Wall-Modeled Turbomachinery LES
,”
Comput. Fluids
,
214
, p.
104766
.10.1016/j.compfluid.2020.104766
14.
Rezchikova
,
A.
,
Mehl
,
C.
,
Drennan
,
S.
, and
Colin
,
O.
,
2021
, “
Large Eddy Simulation of a Turbulent Spray Burner Using Thickened Flame Model and Adaptive Mesh Refinement
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041015
.10.1115/1.4049827
15.
Sjunnesson
,
A.
,
Nelsson
,
C.
, and
Max
,
E.
,
1991
, “
LDA Measurements of Velocities and Turbulence in a Bluff Body Stabilized Flame
,” 4th International Conference on Laser Anemometry - Advances and Application, Cleveland, OH, Aug. 5–9
.
16.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X. R.
, and
Giezendanner-Thoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame
,
150
(
1–2
), pp.
2
26
.10.1016/j.combustflame.2007.04.002
17.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
Design of a Massively Parallel CFD Code for Complex Geometries
,”
C. R. Méc.
,
339
(
2–3
), pp.
141
148
.10.1016/j.crme.2010.12.001
18.
Dapogny
,
C.
,
Dobrzynski
,
C.
, and
Frey
,
P.
,
2014
, “
Three-Dimensional Adaptive Domain Remeshing, Implicit Domain Meshing, and Applications to Free and Moving Boundary Problems
,”
J. Comput. Phys.
,
262
, pp.
358
378
.10.1016/j.jcp.2014.01.005
19.
Benard
,
P.
,
Balarac
,
G.
,
Moureau
,
V.
,
Dobrzynski
,
C.
,
Lartigue
,
G.
, and
D'Angelo
,
Y.
,
2016
, “
Mesh Adaptation for Large-Eddy Simulations in Complex Geometries
,”
Int. J. Numer. Methods Fluids
,
81
(
12
), pp.
719
740
.10.1002/fld.4204
20.
Leparoux
,
J.
,
Mercier
,
R.
,
Moureau
,
V.
, and
Musaefendic
,
H.
,
2018
, “
Primary Atomization Simulation Applied to a Jet in Crossflow Aeronautical Injector With Dynamic Mesh Adaptation
,”
ICLASS 2018, 14th Triennal International Conference on Liquid Atomization and Spray Systems
, Chicago, IL, July 22–26, Paper No. 90.https://www.researchgate.net/publication/326631733_Primary_atomization_simulation_applied_to_a_jet_in_crossflow_aeronautical_injector_with_dynamic_mesh_adaptation
21.
Durand
,
L.
, and
Polifke
,
W.
,
2007
, “
Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver
,”
ASME
Paper No. GT2007-28188. 10.1115/GT2007-28188
22.
Grenouilloux
,
A.
,
Balarac
,
G.
,
Leparoux
,
J.
,
Moureau
,
V.
,
Lartigue
,
G.
,
Bénard
,
P.
,
Mercier
,
R.
, and
Ferrey
,
P.
,
2022
, “
On the Use of Kinetic-Energy Balance for the Feature-Based Mesh Adaptation Applied to Large-Eddy Simulation in Complex Geometries
,”
ASME
Paper No. GT2022-80315. 10.1115/GT2022-80315
23.
Duprat
,
C.
,
Balarac
,
G.
,
Métais
,
O.
,
Congedo
,
P. M.
, and
Brugière
,
O.
,
2011
, “
A Wall-Layer Model for Large-Eddy Simulations of Turbulent Flows With/Out Pressure Gradient
,”
Phys. Fluids
,
23
(
1
), p.
015101
.10.1063/1.3529358
24.
Nicoud
,
F.
,
Baya Toda
,
H.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.10.1063/1.3623274
25.
Domingo-Alvarez
,
P.
,
Bénard
,
P.
,
Moureau
,
V.
,
Lartigue
,
G.
, and
Grisch
,
F.
,
2020
, “
Impact of Spray Droplet Distribution on the Performances of a Kerosene Lean/Premixed Injector
,”
Flow, Turbul. Combust.
,
104
(
2–3
), pp.
421
450
.10.1007/s10494-019-00073-5
26.
Domingo
,
P.
,
Vervisch
,
L.
,
Payet
,
S.
, and
Hauguel
,
R.
,
2005
, “
DNS of a Premixed Turbulent V Flame and LES of a Ducted Flame Using a FSD-PDF Subgrid Scale Closure With FPI-Tabulated Chemistry
,”
Combust. Flame
,
143
(
4
), pp.
566
586
.10.1016/j.combustflame.2005.08.023
27.
Luche
,
J.
,
2003
, “
Obtention de Modèles Cinétiques Réduits de combustion - Application à un Mécanisme du Kérosène
,” Ph.D. thesis,
University of Orleans
, Orleans, France.
28.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
From Large-Eddy Simulation to Direct Numerical Simulation of a Lean Premixed Swirl Flame: Filtered Laminar Flame-Pdf Modeling
,”
Combust. Flame
,
158
(
7
), pp.
1340
1357
.10.1016/j.combustflame.2010.12.004
29.
Veynante
,
D.
, and
Knikker
,
R.
,
2006
, “
Comparison Between LES Results and Experimental Data in Reacting Flows
,”
J. Turbul.
,
7
(
7
), p.
N35
.10.1080/14685240600664044
30.
Bernard
,
M.
,
Lartigue
,
G.
,
Balarac
,
G.
,
Moureau
,
V.
, and
Puigt
,
G.
,
2020
, “
A Framework to Perform High-Order Deconvolution for Finite Volume Method on Simplicial Meshes
,”
Int. J. Numer. Methods Fluids
,
92
(
11
), pp.
1551
1583
.10.1002/fld.4839
31.
Kraushaar
,
M.
,
2011
, “
Application of the Compressible and Low-Mach Number Approaches to Large Eddy Simulation of Turbulent Flows in Aero-Engines
,”
Ph.D. thesis
, Institut National Polytechnique de Toulouse (INPT), Toulouse, France
.https://www.researchgate.net/publication/278639309_Application_of_the_compressible_and_lowmach_number_approaches_to_large-eddy_simulation_of_turbulent_flows_in_aero-engines
32.
Shiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Zeitschrift Des Vereins Deutscher Ingenieure
,
77
, pp.
318
320
.
33.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
You do not currently have access to this content.