Abstract

Ammonia is emerging as a very convenient hydrogen- and energy-carrier in the context of present efforts to curb carbon emissions from the power-generation and transport sectors. As opposed to hydrogen, the properties of ammonia make it significantly simpler to transport and store. Early exploratory work on the combustion of pure ammonia in laboratory-scale gas turbine combustors revealed that the adoption of a longitudinal rich-lean staging strategy in the operation of the device is a convenient approach to minimize NOx and N2O emissions from fuel-bound nitrogen oxidation. Moreover, recent experimental evidence acquired at SINTEF confirms that the low-emission performance achieved with rich-lean staging also applies to the combustion of partially decomposed ammonia. In this paper, we report a comprehensive numerical modeling study that exploits large eddy simulation (LES) in conjunction with detailed chemical kinetics and a chemical reactors network (CRN) model to assess a rich-lean staging strategy applied to the combustion of partially decomposed ammonia in the Siemens Energy fourth-generation dry low emission (DLE) burner. Data analysis performed from both numerical modeling approaches, LES and CRN, confirm that the rich-lean staging strategy tested in the present study indeed results in significantly lower emissions compared to the conventional operational profile of the burner. Furthermore, reaction pathways analysis performed on the CRN data reveals important details that characterize the different evolution of nitrogen species between the nonstaged and staged operation of the burner, ultimately leading to the observed difference in NOx and N2O emissions

References

1.
IPCC
,
2019
, “
Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems
,” P. R. Shukla, J. Skea, R. Slade, R. van Diemen, E. Haughey, J. Malley, M. Pathak, and J. Portugal Pereira, eds., IPCC, World Meteorological Organization, Geneva, Switzerland, Report.https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf
2.
Valera-Medina
,
A.
,
Morris
,
S.
,
Runyon
,
J.
,
Pugh
,
D.
,
Marsh
,
R.
,
Beasley
,
P.
, and
Hughes
,
T.
,
2015
, “
Ammonia, Methane and Hydrogen for Gas Turbines
,”
Energy Procedia
,
75
, pp.
118
123
.10.1016/j.egypro.2015.07.205
3.
Verkamp
,
F.
,
Hardin
,
M.
, and
Williams
,
J.
,
1967
, “
Ammonia Combustion Properties and Performance in Gas-Turbine Burners
,”
Symp. (Int.) Combust.
,
11
(
1
), pp.
985
992
.10.1016/S0082-0784(67)80225-X
4.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W.
, and
Bowen
,
P.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
5.
Jiang
,
Y.
,
Gruber
,
A.
,
Seshadri
,
K.
, and
Williams
,
F.
,
2020
, “
An Updated Short Chemical-Kinetic Nitrogen Mechanism for Carbon-Free Combustion Applications
,”
Int. J. Energy Res.
,
44
(
2
), pp.
795
810
.10.1002/er.4891
6.
Wiseman
,
S.
,
Rieth
,
M.
,
Gruber
,
A.
,
Dawson
,
J. R.
, and
Chen
,
J. H.
,
2021
, “
A Comparison of the Blow-Out Behavior of Turbulent Premixed Ammonia/Hydrogen/Nitrogen-Air and Methane–Air Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2869
2876
.10.1016/j.proci.2020.07.011
7.
Rieth
,
M.
,
Gruber
,
A.
,
Williams
,
F.
, and
Chen
,
J. H.
,
2022
, “
Enhanced Burning Rates in Hydrogen-Enriched Turbulent Premixed Flames by Diffusion of Molecular and Atomic Hydrogen
,”
Combust. Flame
,
239
, p.
111740
.10.1016/j.combustflame.2021.111740
8.
Tian
,
H.
,
Xu
,
R.
,
Canadell
,
J. G.
,
Thompson
,
R. L.
,
Winiwarter
,
W.
,
Suntharalingam
,
P.
,
Davidson
,
E. A.
,
Ciais
,
P.
,
Jackson
,
R. B.
,
Janssens-Maenhout
,
G.
,
Prather
,
M. J.
,
Regnier
,
P.
,
Pan
,
N.
,
Pan
,
S.
,
Peters
,
G. P.
,
Shi
,
H.
,
Tubiello
,
F. N.
,
Zaehle
,
S.
,
Zhou
,
F.
,
Arneth
,
A.
,
Battaglia
,
G.
,
Berthet
,
S.
,
Bopp
,
L.
,
Bouwman
,
A. F.
,
Buitenhuis
,
E. T.
,
Chang
,
J.
,
Chipperfield
,
M. P.
,
Dangal
,
S. R. S.
,
Dlugokencky
,
E.
,
Elkins
,
J. W.
,
Eyre
,
B. D.
,
Fu
,
B.
,
Hall
,
B.
,
Ito
,
A.
,
Joos
,
F.
,
Krummel
,
P. B.
,
Landolfi
,
A.
,
Laruelle
,
G. G.
,
Lauerwald
,
R.
,
Li
,
W.
,
Lienert
,
S.
,
Maavara
,
T.
,
MacLeod
,
M.
,
Millet
,
D. B.
,
Olin
,
S.
,
Patra
,
P. K.
,
Prinn
,
R. G.
,
Raymond
,
P. A.
,
Ruiz
,
D. J.
,
van der Werf
,
G. R.
,
Vuichard
,
N.
,
Wang
,
J.
,
Weiss
,
R. F.
,
Wells
,
K. C.
,
Wilson
,
C.
,
Yang
,
J.
, and
Yao
,
Y.
,
2020
, “
A Comprehensive Quantification of Global Nitrous Oxide Sources and Sinks
,”
Nature
,
586
(
7828
), pp.
248
256
.10.1038/s41586-020-2780-0
9.
Grcar
,
J. F.
,
Glarborg
,
P.
,
Bell
,
J. B.
,
Day
,
M. S.
,
Loren
,
A.
, and
Jensen
,
A. D.
,
2005
, “
Effects of Mixing on Ammonia Oxidation in Combustion Environments at Intermediate Temperatures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1193
1200
.10.1016/j.proci.2004.08.018
10.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
NO Formation/Reduction Mechanisms of Ammonia/Air Premixed Flames at Various Equivalence Ratios and Pressures
,”
Mech. Eng. J.
,
2
(
1
), p. 14–00402.10.1299/mej.14-00402
11.
Somarathne
,
K. D. K. A.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2016
, “
Numerical Investigation on the Combustion Characteristics of Turbulent Premixed Ammonia/Air Flames Stabilized by a Swirl Burner
,”
Bull. JSME
,
11
(
4
), p.
JFST0026
.10.1299/jfst.2016jfst0026
12.
Somarathne
,
K. D. K. A.
,
Hatakeyama
,
S.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2017
, “
Numerical Study of a Low Emission Gas Turbine Like Combustor for Turbulent Ammonia/Air Premixed Swirl Flames With a Secondary Air Injection at High Pressure
,”
Int. J. Hydrogen Energy
,
42
(
44
), pp.
27388
27399
.10.1016/j.ijhydene.2017.09.089
13.
Valera-Medina
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Pugh
,
D.
,
Beasley
,
P.
,
Hughes
,
T.
, and
Bowen
,
P.
,
2017
, “
Ammonia–Methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
,”
Appl. Energy
,
185
, pp.
1362
1371
.10.1016/j.apenergy.2016.02.073
14.
Pacheco
,
G. P.
,
Rocha
,
R. C.
,
Franco
,
M. C.
,
Mendes
,
M. A. A.
,
Fernandes
,
E. C.
,
Coelho
,
P. J.
, and
Bai
,
X.-S.
,
2021
, “
Experimental and Kinetic Investigation of Stoichiometric to Rich NH3/H2/Air Flames in a Swirl and Bluff-Body Stabilized Burner
,”
Energy Fuels
,
35
(
9
), pp.
7201
7216
.10.1021/acs.energyfuels.0c03872
15.
Iki
,
N.
,
Kurata
,
O.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
,
Hayakawa
,
A.
, and
Okafor
,
E.
,
2018
, “
NOx Reduction in a Swirl Combustor Firing Ammonia for a Micro Gas Turbine
,”
ASME
Paper No. GT2018-75993.10.1115/GT2018-75993
16.
Kurata
,
O.
,
Iki
,
N.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Performances and Emission Characteristics of NH3–Air and NH3-CH4–Air Combustion Gas-Turbine Power Generations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3351
3359
.10.1016/j.proci.2016.07.088
17.
Okafor
,
E. C.
,
Somarathne
,
K. K. A.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4597
4606
.10.1016/j.proci.2018.07.083
18.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Wang
,
G.
,
Boyette
,
W. R.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2021
, “
Stability Limits and No Emissions of Premixed Swirl Ammonia-Air Flames Enriched With Hydrogen or Methane at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
46
(
21
), pp.
11969
11981
.10.1016/j.ijhydene.2021.01.036
19.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2020
, “
Stability Limits and No Emissions of Technically-Premixed Ammonia-Hydrogen-Nitrogen-Air Swirl Flames
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
22008
22018
.10.1016/j.ijhydene.2020.05.236
20.
Ditaranto
,
M.
,
Saanum
,
I.
, and
Larfeldt
,
J.
,
2021
, “
Experimental Study on High Pressure Combustion of Decomposed Ammonia: How Can Ammonia Be Best Used in a Gas Turbine?
,”
ASME
Paper No. GT2021-60057.10.1115/GT2021-60057
21.
Carrera
,
A. M.
,
Andersson
,
M.
, and
Nasvall
,
H.
,
2011
, “
Experimental Investigation of the 4th Generation DLE Burner Concept: Emissions and Fuel Flexibility Performance at Atmospheric Conditions
,”
ASME
Paper No. GT2011-46387.10.1115/GT2011-46387
22.
Sigfrid
,
I. R.
,
Whiddon
,
R.
,
Alde'n
,
M.
, and
Klingmann
,
J.
,
2011
, “
Experimental Investigations of Lean Stability Limits of a Prototype Syngas Burner for Low Calorific Value Gases
,”
ASME
Paper No. GT2011-45694.10.1115/GT2011-45694
23.
Kundu
,
A.
,
Klingmann
,
J.
,
Subash
,
A. A.
, and
Collin
,
R.
,
2016
, “
Flame Stabilization and Emission Characteristics of a Prototype Gas Turbine Burner at Atmospheric Conditions
,”
ASME
Paper No. GT2016-57336.10.1115/GT2016-57336
24.
Kundu
,
A.
,
2016
, “
Combustion Characteristics of a Swirl Dry Low Emission Burner Concept for Gas Turbine Application
,”
Ph.D. thesis
,
Lund University
, Lund, Sweden.https://lup.lub.lu.se/search/files/19310286/Atanu_K_without_papers.pdf
25.
Subash
,
A.
,
2018
, “
Laser-Based Investigations of Combustion Phenomena in Gas Turbine Related Burners
,”
Ph.D. thesis
,
Lund University
, Lund, Sweden.https://lucris.lub.lu.se/ws/files/36134621/Arman_Subash_PhD_Thesis_2018_LUCRIS.pdf
26.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), p.
620
.10.1063/1.168744
27.
Kim
,
W.-W.
, and
Menon
,
S.
,
1995
, “
A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations
,”
AIAA
Paper No. 1995-356.10.2514/6.1995-356
28.
Fureby
,
C.
,
2012
, “
A Comparative Study of Flamelet and Finite Rate Chemistry Les for a Swirl Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041503
.10.1115/1.4004718
29.
Baudoin
,
E.
,
Yu
,
R.
,
Bai
,
Nogenmur
,
K. J.
,
Bai
,
X.-S.
, and
Fureby
,
C.
, “
Comparison of LES Models Applied to a Bluff Body Stabilized Flame
,”
AIAA
Paper No. 2009-1178.10.2514/6.2009-1178
30.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, pp.
35
35
.10.1088/1367-2630/6/1/035
31.
Hormigos-Jimenez
,
S.
,
Padilla-Marcos
,
M. A.
,
Meiss
,
A.
,
Gonzalez-Lezcano
,
R. A.
, and
Feijó-MuÑoz
,
J.
,
2018
, “
Experimental Validation of the Age-of-the-Air CFD Analysis: A Case Study
,”
Sci. Technol. Built Environ.
,
24
(
9
), pp.
994
1003
.10.1080/23744731.2018.1444885
32.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2021
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, accessed Sept. 30, 2022, https://www.cantera.org
33.
University of California at San Diego, “Chemical-Kinetic Mechanisms for Combustion Applications,” San Diego Mechanism, University of California at San Diego, La Jolla, CA.
34.
Stagni
,
A.
,
Cavallotti
,
C.
,
Arunthanayothin
,
S.
,
Song
,
Y.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
, and
Faravelli
,
T.
,
2020
, “
An Experimental, Theoretical and Kinetic-Modeling Study of the Gas-Phase Oxidation of Ammonia
,”
React. Chem. Eng.
,
5
(
4
), pp.
696
711
.10.1039/C9RE00429G
35.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
,
1999
,
Combustion
, 2nd ed.,
Springer
,
Berlin
.
36.
Magnusson
,
R.
, and
Andersson
,
M.
,
2021
, “
Operation of SGT-600 (24 MW) DLE Gas Turbine With Over 60% H2 in Natural Gas
,”
ASME
Paper No. GT2020-16332.10.1115/GT2020-16332
37.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2012
, “
Premixed Flame Flashback in Wall Boundary Layers Studied by Long-Distance Micro-PIV
,”
Exp. Fluids
,
52
(
2
), pp.
347
360
.10.1007/s00348-011-1226-8
38.
Ebi
,
D.
,
Bombach
,
R.
, and
Jansohn
,
P.
,
2021
, “
Swirl Flame Boundary Layer Flashback at Elevated Pressure: Modes of Propagation and Effect of Hydrogen Addition
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6345
6353
.10.1016/j.proci.2020.06.305
39.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.10.1017/jfm.2012.345
40.
Gruber
,
A.
,
Richardson
,
E. S.
,
Aditya
,
K.
, and
Chen
,
J. H.
,
2018
, “
Direct Numerical Simulations of Premixed and Stratified Flame Propagation in Turbulent Channel Flow
,”
Phys. Rev. Fluids
,
3
(
11
), p.
110507
.10.1103/PhysRevFluids.3.110507
41.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
You do not currently have access to this content.