Abstract

In the field of gas turbine (GT) monitoring and diagnostics, GT trip is of great concern for manufactures and users. In fact, due to the number of issues that may cause a trip, its occurrence is not infrequent, and its prediction is a quite unexplored field of research. This is demonstrated by the fact that, despite its relevance, a comprehensive study on the reliability of predicting GT trip has not been proposed yet. To fill this gap, this paper investigates the fusion of five data-driven base models by means of voting and stacking, in order to improve prediction accuracy and robustness. The five benchmark supervised machine learning and deep learning classifiers are k-nearest neighbors, support vector machine (SVM), Naïve Bayes (NB), decision trees (DTs), and long short-term memory (LSTM) neural networks. While voting just averages the predictions of base models, without providing additional pieces of information, stacking is a technique used to aggregate heterogeneous models by training an additional machine learning model (namely, stacked ensemble model) on the predictions of the base models. The analyses carried out in this paper employ filed observations of both safe operation and trip events, derived from a large fleet of industrial Siemens GTs in operation. The results demonstrate that the stacked model provides higher accuracy than base models and also outperforms voting by proving more effective, especially when the reliability of the prediction of base models is poor.

References

1.
Tahan
,
M.
,
Tsoutsanis
,
E.
,
Muhammad
,
M.
, and
Abdul Karim
,
Z. A.
,
2017
, “
Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review
,”
Appl. Energy
,
198
, pp.
122
144
.10.1016/j.apenergy.2017.04.048
2.
Wen
,
Y.
,
Rahman
,
M. F.
,
Xu
,
H.
, and
Tseng
,
T.-L. B.
,
2022
, “
Recent Advances and Trends of Predictive Maintenance From Data-Driven Machine Prognostics Perspective
,”
Measurement
,
187
, p.
110276
.10.1016/j.measurement.2021.110276
3.
Salilew
,
W. M.
,
Abdul Karim
,
Z. A.
, and
Baheta
,
A. T.
,
2021
, “Review on Gas Turbine Condition Based Diagnosis Method,”
Mater. Today: Proc.
, epub.10.1016/j.matpr.2020.12.1049
4.
Ceschini
,
G. F.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2018
, “
A Comprehensive Approach for Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (DCIDS)
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032402
.10.1115/1.4037964
5.
Manservigi
,
L.
,
Venturini
,
M.
,
Ceschini
,
G. F.
,
Bechini
,
G.
, and
Losi
,
E.
,
2020
, “
Development and Validation of a General and Robust Methodology for the Detection and Classification of Gas Turbine Sensor Faults
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p. 0
21009
.10.1115/1.4045711
6.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
, and
Bechini
,
G.
,
2019
, “
Anomaly Detection in Gas Turbine Time Series by Means of Bayesian Hierarchical Models
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111019
.10.1115/1.4044781
7.
Puggina
,
N.
, and
Venturini
,
M.
,
2012
, “
Development of a Statistical Methodology for Gas Turbine Prognostics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p. 0
22401
.10.1115/1.4004185
8.
Cavarzere
,
A.
, and
Venturini
,
M.
,
2012
, “
Application of Forecasting Methodologies to Predict Gas Turbine Behavior Over Time
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p. 0
12401
.10.1115/1.4004184
9.
Venturini
,
M.
, and
Puggina
,
N.
,
2012
, “
Prediction Reliability of a Statistical Methodology for Gas Turbine Prognostics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101601
.10.1115/1.4007064
10.
Venturini
,
M.
, and
Therkorn
,
D.
,
2013
, “
Application of a Statistical Methodology for Gas Turbine Degradation Prognostics to Alstom Field Data
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p. 0
91603
.10.1115/1.4024952
11.
Gatta
,
N.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
, and
Bechini
,
G.
,
2018
, “
Capability of the Bayesian Forecasting Method to Predict Field Time Series
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121013
.10.1115/1.4040736
12.
Losi
,
E.
,
Venturini
,
M.
, and
Manservigi
,
L.
,
2019
, “
Gas Turbine Health State Prognostics by Means of Bayesian Hierarchical Models
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111018
.10.1115/1.4044689
13.
Losi
,
E.
,
Venturini
,
M.
, and
Manservigi
,
L.
,
2020
, “
Autoregressive Bayesian Hierarchical Model to Predict Gas Turbine Degradation
,”
ASME
Paper No. GT2020-16330.10.1115/GT2020-16330
14.
Ramesh
,
P. G.
,
Dutta
,
S. J.
,
Neog
,
S. S.
,
Baishya
,
P.
, and
Bezbaruah
,
I.
,
2020
, “
Implementation of Predictive Maintenance Systems in Remotely Located Process Plants Under Industry 4.0 Scenario
,”
Advances in RAMS Engineering
,
Springer, Cham
,
Switzerland
, pp.
293
326
.
15.
Arghandeh
,
R.
, and
Zhou
,
Y.
, eds.,
2018
,
Big Data Application in Power Systems
,
Elsevier
,
Amsterdam, The Netherlands
.
16.
Qin
,
S. J.
, and
Chiang
,
L. H.
,
2019
, “
Advances and Opportunities in Machine Learning for Process Data Analytics
,”
Comput. Chem. Eng.
,
126
, pp.
465
473
.10.1016/j.compchemeng.2019.04.003
17.
Xu
,
Z.
, and
Saleh
,
J. H.
,
2021
, “
Machine Learning for Reliability Engineering and Safety Applications: Review of Current Status and Future Opportunities
,”
Reliab. Eng. Syst. Saf.
,
211
, p.
107530
.10.1016/j.ress.2021.107530
18.
Allen
,
C. W.
,
Holcomb
,
C. M.
, and
de Oliveira
,
M.
,
2017
, “
Gas Turbine Machinery Diagnostics: A Brief Review and a Sample Application
,”
ASME
Paper No. GT2017-64755.10.1115/GT2017-64755
19.
Rachman
,
A.
, and
Ratnayake
,
R. M. C.
,
2019
, “
Machine Learning Approach for Risk-Based Inspection Screening Assessment
,”
Reliab. Eng. Syst. Saf.
,
185
, pp.
518
532
.10.1016/j.ress.2019.02.008
20.
Fentaye
,
A. D.
,
Ul-Haq Gilani
,
S. I.
,
Baheta
,
A. T.
, and
Li
,
Y.-G.
,
2019
, “
Performance-Based Fault Diagnosis of a Gas Turbine Engine Using an Integrated Support Vector Machine and Artificial Neural Network Method
,”
Proc. Inst. Mech. Eng., Part A
,
233
(
6
), pp.
786
802
.10.1177/0957650918812510
21.
Hu
,
W.
,
Liu
,
J.
,
Cui
,
J.
,
Gao
,
Y.
,
Cui
,
B.
, and
Jiang
,
L.
,
2014
, “
Fault Diagnosis of Gas Turbine Based on Support Vector Machine
,” The 26th Chinese Control and Decision Conference (
2014 CCDC
), Changsha, China, May 31–June 2, pp.
2853
2856
.10.1109/CCDC.2014.6852659
22.
Zhou
,
D.
,
Zhang
,
H.
, and
Weng
,
S.
,
2015
, “
A New Gas Path Fault Diagnostic Method of Gas Turbine Based on Support Vector Machine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
102605
.10.1115/1.4030277
23.
Manservigi
,
L.
,
Murray
,
D.
,
de la Iglesia
,
J. A.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Losi
,
E.
, and
Venturini
,
M.
,
2021
, “
Detection of Unit of Measure Inconsistency in Gas Turbine Sensors by Means of Support Vector Machine Classifier
,”
ISA Trans.
,
123
, pp.
323
338
.10.1016/j.isatra.2021.05.034
24.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
,
2022
, “
Prediction of Gas Turbine Trip: A Novel Methodology Based on Random Forest Models
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p. 0
31025
.10.1115/1.4053194
25.
Yan
,
W.
,
2006
, “
Application of Random Forest to Aircraft Engine Fault Diagnosis
,”
The Proceedings of the Multiconference on Computational Engineering in Systems Applications
, Beijing, China, Oct. 4–6, Vol.
1
, pp.
468
475
.10.1109/CESA.2006.4281698
26.
Maragoudakis
,
M.
,
Loukis
,
E.
, and
Pantelides
,
P. P.
,
2008
, “
Random Forests Identification of Gas Turbine Faults
,”
19th International Conference on Systems Engineering
, Las Vegas, NV, Aug. 19–21, pp.
127
132
.10.1109/ICSEng.2008.81
27.
Wang
,
C.
,
Lu
,
N.
,
Cheng
,
Y.
, and
Jiang
,
B.
,
2018
, “
Deep Forest Based Multivariate Classification for Diagnostic Health Monitoring
,” 2018 Chinese Control and Decision Conference (
CCDC
),
Shenyang
, China, June 9–11, pp.
6233
6238
.10.1109/CCDC.2018.8408224
28.
Batayev
,
N.
,
2018
, “
Gas Turbine Fault Classification Based on Machine Learning Supervised Techniques
,” 2018 14th International Conference on Electronics Computer and Computation (
ICECCO
),
Kaskelen, Kazakhstan
, Nov. 29–Dec. 1, pp.
206
212
.10.1109/ICECCO.2018.8634719
29.
Bechini
,
G.
,
Losi
,
E.
,
Manservigi
,
L.
,
Pagliarini
,
G.
,
Sciavicco
,
G.
,
Stan
,
E. I.
, and
Venturini
,
M.
,
2022
, “
Temporal Random Forest Applied to Gas Turbine Trip Prediction
,”
ASME
Paper No. GT2022-82915.10.1115/GT2022-82915
30.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
115
, pp.
213
237
.10.1016/j.ymssp.2018.05.050
31.
Khan
,
S.
, and
Yairi
,
T.
,
2018
, “
A Review on the Application of Deep Learning in System Health Management
,”
Mech. Syst. Signal Process.
,
107
, pp.
241
265
.10.1016/j.ymssp.2017.11.024
32.
Xiang
,
S.
,
Qin
,
Y.
,
Luo
,
J.
,
Pu
,
H.
, and
Tang
,
B.
,
2021
, “
Multicellular LSTM-Based Deep Learning Model for Aero-Engine Remaining Useful Life Prediction
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
107927
.10.1016/j.ress.2021.107927
33.
Zhang
,
J.
,
Wang
,
P.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2018
, “
Deep Learning for Improvement System Remaining Life Prediction
,”
Procedia CIRP
,
72
, pp.
1033
1038
.10.1016/j.procir.2018.03.262
34.
Wu
,
Y.
,
Yuan
,
M.
,
Dong
,
S.
,
Lin
,
L.
, and
Liu
,
Y.
,
2018
, “
Remaining Useful Life Estimation of Engineered Systems Using Vanilla LSTM Neural Networks
,”
Neurocomputing
,
275
, pp.
167
179
.10.1016/j.neucom.2017.05.063
35.
Zhao
,
S.
,
Zhang
,
Y.
,
Wang
,
S.
,
Zhou
,
B.
, and
Cheng
,
C.
,
2019
, “
A Recurrent Neural Network Approach for Remaining Useful Life Prediction Utilizing a Novel Trend Features Construction Method
,”
Measurement
,
146
, pp.
279
288
.10.1016/j.measurement.2019.06.004
36.
Zhang
,
A.
,
Wang
,
H.
,
Li
,
S.
,
Cui
,
Y.
,
Liu
,
Z.
,
Yang
,
G.
, and
Hu
,
J.
,
2018
, “Transfer Learning With Deep Recurrent Neural Networks for Remaining Useful Life Estimation,”
Appl. Sci.
,
8
(
12
), p.
2416
.10.3390/app8122416
37.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
,
2021
, “
Structured Methodology for Clustering Gas Turbine Transients by Means of Multivariate Time Series
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p. 0
31014
.10.1115/1.4049503
38.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
,
2021
, “
Data Selection and Feature Engineering for the Application of Machine Learning to the Prediction of Gas Turbine Trip
,”
ASME
Paper No. GT2021-58914.10.1115/GT2021-58914
39.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
, and
Bechini
,
G.
,
2022
, “
Detection of the Onset of Trip Symptoms Embedded in Gas Turbine Operating Data
,”
ASME
Paper No. GT2022-80666.10.1115/GT2022-80666
40.
Amozegar
,
M.
, and
Khorasani
,
K.
,
2016
, “
An Ensemble of Dynamic Neural Network Identifiers for Fault Detection and Isolation of Gas Turbine Engines
,”
Neural Networks
,
76
, pp.
106
121
.10.1016/j.neunet.2016.01.003
41.
Cover
,
T.
, and
Hart
,
P.
,
1967
, “
Nearest Neighbor Pattern Classification
,”
IEEE Trans. Inf. Theory
,
13
(
1
), pp.
21
27
.10.1109/TIT.1967.1053964
42.
Sanchez
,
J. S.
,
Pla
,
F.
, and
Ferri
,
F. J.
,
1997
, “
On the Use of Neighbourhood-Based Non-Parametric Classifiers
,”
Pattern Recognit. Lett.
,
18
(
11–13
), pp.
1179
1186
.10.1016/S0167-8655(97)00112-8
43.
Tran
,
T. M.
,
Thi Le
,
X. M.
,
Nguyen
,
H. T.
, and
Huynh
,
V. N.
,
2019
, “
A Novel Non-Parametric Method for Time Series Classification Based on κ-Nearest Neighbors and Dynamic Time Warping Barycenter Averaging
,”
Eng. Appl. Artif. Intell.
,
78
, pp.
173
185
.10.1016/j.engappai.2018.11.009
44.
Cheng
,
D.
,
Zhang
,
S.
,
Deng
,
Z.
,
Zhu
,
Y.
, and
Zong
,
M.
,
2014
, “
kNN Algorithm With Data-Driven k Value
,”
Advanced Data Mining and Applications
(Lecture Notes in Computer Science, Vol.
8933
),
X.
Luo
,
J. X.
Yu
, and
Z.
Li
, eds.,
Springer, Cham
,
Switzerland
.
45.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.10.1007/BF00994018
46.
Wang
,
H.
,
Peng
,
M. J.
,
Hines
,
J. W.
,
Zheng
,
G. Y.
,
Liu
,
Y. K.
, and
Upadhyaya
,
B. R.
,
2019
, “
A Hybrid Fault Diagnosis Methodology With Support Vector Machine and Improved Particle Swarm Optimization for Nuclear Power Plants
,”
ISA Trans.
,
95
, pp.
358
371
.10.1016/j.isatra.2019.05.016
47.
Doan
,
Q. H.
,
Le
,
T.
, and
Thai
,
D. K.
,
2021
, “
Optimization Strategies of Neural Networks for Impact Damage Classification of RC Panels in a Small Dataset
,”
Appl. Soft Comput.
,
102
, p.
107100
.10.1016/j.asoc.2021.107100
48.
Bedi
,
P.
,
Mewada
,
S.
,
Vatti
,
R. A.
,
Singh
,
C.
,
Dhindsa
,
K.
S.,
Ponnusamy
,
M.
, and
Sikarwar
,
R.
,
2021
, “
Detection of Attacks in IoT Sensors Networks Using Machine Learning Algorithm
,”
Microprocessors Microsyst.
,
82
, p.
103814
.10.1016/j.micpro.2020.103814
49.
Saidi
,
L.
,
Ali
,
J. B.
, and
Fnaiech
,
F.
,
2015
, “
Application of Higher Order Spectral Features and Support Vector Machines for Bearing Faults Classification
,”
ISA Trans.
,
54
, pp.
193
206
.10.1016/j.isatra.2014.08.007
50.
Mountrakis
,
G.
,
Im
,
J.
, and
Ogole
,
C.
,
2011
, “
Support Vector Machines in Remote Sensing: A Review
,”
ISPRS J. Photogramm. Remote Sens.
,
66
(
3
), pp.
247
259
.10.1016/j.isprsjprs.2010.11.001
51.
Safavi
,
S.
,
Safavi
,
M. A.
,
Hamid
,
H.
, and
Fallah
,
S.
,
2021
, “
Multi-Sensor Fault Detection, Identification, Isolation and Health Forecasting for Autonomous Vehicles
,”
Sensors
,
21
(
7
), p.
2547
.10.3390/s21072547
52.
Rish
,
I.
,
2001
, “
An Empirical Study of the Naive Bayes Classifier
,”
IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence
, Seattle, WA, Aug. 4–10, Vol. 3, pp.
41
46
.https://www.researchgate.net/publication/228845263_An_Empirical_Study_of_the_Naive_Bayes_Classifier
53.
da Silva
,
P. R. N.
,
Gabbar
,
H. A.
,
Vieira Junior
,
P.
, and
da Costa Junior
,
C. T.
,
2018
, “
A New Methodology for Multiple Incipient Fault Diagnosis in Transmission Lines Using QTA and Naïve Bayes Classifier
,” Int. J.
Electr. Power Energy Syst.
,
103
, pp.
326
346
.10.1016/j.ijepes.2018.05.036
54.
Breiman
,
L.
,
Friedman
,
J.
,
Olshen
,
R.
A., and
Stone
,
C.
J.,
1984
,
Classification and Regression Trees
,
Chapman and Hall
,
Wadsworth, OH
.
55.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.10.1023/A:1010933404324
56.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.10.1162/neco.1997.9.8.1735
57.
Breiman
,
L.
,
1996
, “
Bagging Predictors
,”
Mach. Learn.
,
24
(
2
), pp.
123
140
.10.1007/BF00058655
58.
Freund
,
Y.
, and
Schapire
,
R. E.
,
1997
, “
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
,”
J. Comput. Syst. Sci.
,
55
(
1
), pp.
119
139
.10.1006/jcss.1997.1504
59.
Wolpert
,
D. H.
,
1992
, “
Stacked Generalization
,”
Neural Networks
,
5
(
2
), pp.
241
259
.10.1016/S0893-6080(05)80023-1
60.
Li
,
M.
,
Yan
,
C.
, and
Liu
,
W.
,
2021
, “
The Network Loan Risk Prediction Model Based on Convolutional Neural Network and Stacking Fusion Model
,”
Appl. Soft Comput.
,
113
, p.
107961
.10.1016/j.asoc.2021.107961
61.
Ting
,
K. M.
, and
Witten
,
I. H.
,
1997
, “
Stacked Generalization: When Does It Work?
,”
Proceedings of the International Joint Conference on Artificial Intelligence
, Nagoya, Japan, Aug. 23–29, pp.
866
871
.https://www.ijcai.org/Proceedings/97-2/Papers/011.pdf
62.
Bai
,
M.
,
Liu
,
J.
,
Chai
,
J.
,
Zhao
,
X.
, and
Yu
,
D.
,
2020
, “
Anomaly Detection of Gas Turbines Based on Normal Pattern Extraction
,”
Appl. Therm. Eng.
,
166
, p.
114664
.10.1016/j.applthermaleng.2019.114664
63.
Dufour
,
J.-M.
, and
Neves
,
J.
,
2019
, “
Chapter 1—Finite-Sample Inference and Nonstandard Asymptotics With Monte Carlo Tests and R
,”
Handb. Stat.
,
41
, pp.
3
31
.10.1016/bs.host.2019.05.001
64.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
(
56
), pp.
1929
1958
.http://jmlr.org/papers/v15/srivastava14a.html
65.
Diederik
,
K.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,” 3rd International Conference for Learning Representations, San Diego, CA, e-print arXiv:1412.6980.
66.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
67.
Murphy
,
K. P.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
The MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.