Abstract

High frequency injector-coupled thermoacoustic instabilities are a major threat to multi-jet combustors in rocket and gas turbine engines. The complex three-dimensional acoustic coupling between the combustion chamber and injector acoustics cause local fluctuations in heat release. In turn, multiple thermoacoustic feedback mechanisms close the thermoacoustic loop and serve as a source of the thermoacoustic instability. Except for the flame deformation and flame displacement mechanism, the underlying feedback mechanisms for high frequency instabilities are to a large extent unknown. The paper at hand gives new insights into the injector-coupled convective driving mechanisms that are present in multi-jet combustors at perfectly premixed conditions. The forced flame response to the first transverse combustor mode is investigated for two distinct injector tube lengths: one with an axial acoustic velocity node and one with a velocity antinode coupling at the injector–combustor interface. Phase locked OH* images reveal convectively transported coherent vortex structures as the main source of the flame response. The origin of the flame response can be linked to the axial acoustic velocity at the injector–combustor interface using numerical simulations. Both configurations show a clear oscillation of the heat release fluctuations in-phase with the acoustic pressure fluctuations. In similarity to time delay models in low frequency thermoacoustics, a wave number model is proposed to estimate the local flame response due to feed flow modulations and validated with the experimental results.

References

1.
Harrje
,
D. T.
, and
Reardon
,
F. H.
,
1972
, “
Liquid Propellant Rocket Combustion Instability
,” National Aeronautics and Space Administration, NASA Headquarters, Washington, DC, Report No.
NASA-SP-194
.https://ntrs.nasa.gov/citations/19720026079
2.
Krebs
,
W.
,
Schulz
,
A.
,
Winzel
,
B.
,
Johnson
,
C.
,
Laster
,
W.
,
Pent
,
J.
,
Schilp
,
R.
,
Wasif
,
S.
, and
Weaver
,
A.
,
2022
, “
Advanced Combustion System for High Efficiency (ACE) of the New SGT/6-9000HL Gas Turbine
,”
ASME
Paper No. GT2022-82299.10.1115/GT2022-82299
3.
Lee
,
T.
, and
Kim
,
K. T.
,
2022
, “
High-Frequency Transverse Combustion Instabilities of Lean-Premixed Multislit Hydrogen-Air Flames
,”
Combust. Flame
,
238
, p.
111899
.10.1016/j.combustflame.2021.111899
4.
Grimm
,
F.
,
Lourier
,
J. M.
,
Lammel
,
O.
,
Noll
,
B.
, and
Aigner
,
M.
,
2017
, “
A Selective Fast Fourier Filtering Approach Applied to High Frequency Thermoacoustic Instability Analysis
,”
ASME
Paper No. GT2017-63234.10.1115/GT2017-63234
5.
Kim
,
J.
,
Gillman
,
W.
,
Wu
,
D.
,
Emerson
,
B.
,
Acharya
,
V.
,
Mckinney
,
R.
,
Isono
,
M.
,
Saitoh
,
T.
, and
Lieuwen
,
T.
,
2021
, “
Identification of High-Frequency Transverse Acoustic Modes in Multi-Nozzle Can Combustors
,”
ASME
Paper No. GT2020-16130.
10.1115/GT2020-16130
6.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
.10.1115/1.4001825
7.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
8.
Buschhagen
,
T.
,
Gejji
,
R.
,
Philo
,
J.
,
Tran
,
L.
,
Portillo Bilbao
,
J. E.
, and
Slabaugh
,
C. D.
,
2018
, “
Experimental Investigation of Self-Excited Combustion Instabilities in a Lean, Premixed, Gas Turbine Combustor at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
111503
.10.1115/1.4039760
9.
Buschhagen
,
T.
,
Gejji
,
R.
,
Philo
,
J.
,
Tran
,
L.
,
Portillo Bilbao
,
J. E.
, and
Slabaugh
,
C. D.
,
2019
, “
Self-Excited Transverse Combustion Instabilities in a High Pressure Lean Premixed Jet Flame
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5181
5188
.10.1016/j.proci.2018.07.086
10.
Philo
,
J. J.
,
Gejji
,
R. M.
, and
Slabaugh
,
C.
,
2020
, “
Injector-Coupled Transverse Instabilities in a Multi-Element Premixed Combustor
,”
Int. J. Spray Combust. Dyn.
,
12
, p.
175682772093283
.10.1177/1756827720932832
11.
Staffelbach
,
G.
,
Gicquel
,
L.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.10.1016/j.proci.2008.05.033
12.
O'Hara
,
L.
,
Yu
,
Y.
,
Anderson
,
W.
,
Merkle
,
C.
, and
Smith
,
R.
,
2009
, “
A Vortex Shedding-Based Combustion Response Model Applied to an Unstable Liquid Rocket Combustor
,”
AIAA
Paper No. 2009-5136.10.2514/6.2009-5136
13.
Schwing
,
J.
,
Grimm
,
F.
, and
Sattelmayer
,
T.
,
2012
, “
A Model for the Thermo-Acoustic Feedback of Transverse Acoustic Modes and Periodic Oscillations in Flame Position in Cylindrical Flame Tubes
,”
ASME
Paper No. GT2012-68775.10.1115/GT2012-68775
14.
Schwing
,
J.
, and
Sattelmayer
,
T.
,
2013
, “
High-Frequency Instabilities in Cylindrical Flame Tubes: Feedback Mechanism and Damping
,”
ASME
Paper No. GT2013-94064.10.1115/GT2013-94064
15.
Zellhuber
,
M.
,
Schwing
,
J.
,
Schuermans
,
B.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2014
, “
Experimental and Numerical Investigation of Thermoacoustic Sources Related to High-Frequency Instabilities
,”
Int. J. Spray Combust. Dyn.
,
6
(
1
), pp.
1
34
.10.1260/1756-8277.6.1.1
16.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors: Part Two—Modeling and Analysis
,”
ASME
Paper No. GT2016-57500.10.1115/GT2016-57500
17.
Berger
,
F.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Kaufmann
,
J.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part i Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071501
.10.1115/1.4035591
18.
McClure
,
J.
,
Berger
,
F. M.
,
Bertsch
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2022
, “
Observation of Reactive Shear Layer Modulation Associated With High-Frequency Transverse Thermoacoustic Oscillations in a Gas Turbine Reheat Combustor Experiment
,”
Int. J. Spray Combust. Dyn.
,
14
(
1–2
), pp.
131
142
.10.1177/17568277221088192
19.
Shipley
,
K. J.
,
2014
, “Multi-Injector Modeling of Transverse Combustion Instability Experiments,”
Ph.D. thesis
,
Purdue University
,
West Lafayette, IN
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1279&context=open_access_theses
20.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.10.1115/GT2004-53831
21.
Sattelmayer
,
T.
,
2003
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.10.1115/1.1365159
22.
Rosenkranz
,
J. A.
, and
Sattelmayer
,
T.
,
2022
, “
An Analytical Model of the Injector Response to High Frequency Modes in a Tubular Multi Jet Combustor
,”
ASME
Paper No. GT2022-81957.10.1115/GT2022-81957
23.
Heilmann
,
G.
, and
Sattelmayer
,
T.
,
2022
, “
On the Convective Wave Equation for the Investigation of Combustor Stability Using FEM-Methods
,”
Int. J. Spray Combust. Dyn.
,
14
(
1–2
), pp.
55
71
.10.1177/17568277221084470
24.
Schulze
,
M.
,
Wagner
,
M.
, and
Sattelmayer
,
T.
,
2016
, “
Linearized Euler Equations for the Determination of Scattering Matrices for Orifice and Perforated Plate Configurations in the High Mach Number Regime
,”
Aerospace
,
3
(
4
), p.
33
.10.3390/aerospace3040033
25.
Blimbaum
,
J.
,
Zanchetta
,
M.
,
Akin
,
T.
,
Acharya
,
V.
,
O'Connor
,
J.
,
Noble
,
D. R.
, and
Lieuwen
,
T.
,
2012
, “
Transverse to Longitudinal Acoustic Coupling Processes in Annular Combustion Chambers
,”
Int. J. Spray Combust. Dyn.
,
4
(
4
), pp.
275
297
.10.1260/1756-8277.4.4.275
26.
Poinsot
,
T.
, and
Veynante
,
D.
,
2001
,
Theoretical and Numerical Combustion
,
Edwards
,
Philadelphia, PA
.
27.
Brear
,
M. J.
,
Nicoud
,
F.
,
Talei
,
M.
,
Giauque
,
A.
, and
Hawkes
,
E. R.
,
2012
, “
Disturbance Energy Transport and Sound Production in Gaseous Combustion
,”
J. Fluid Mech.
,
707
, pp.
53
73
.10.1017/jfm.2012.264
28.
Schuermans
,
B.
,
Moeck
,
J.
,
Audrey
,
B.
,
Bayu
,
D.
, and
Nicolas
,
N.
,
2022
, “
The Rayleigh Integral Is Always Positive in Steadily Operated Combustors
,”
Combust. Flame
, 39(4), pp.
4661
4669
.10.1016/j.proci.2022.08.035
You do not currently have access to this content.