Abstract

Due to manufacturing, assembly, and operational conditions, gaps are commonly presented in the turbine components, such as platform blade-to-blade gap (slashface gap) and rim cavity platform gap (slot gap). The coolant ejected through these gaps not only limits hot mainstream gas ingestion into the disk cavity but also has the potential to provide endwall film cooling coverage. Nevertheless, the interaction of these gap flows, predesigned film hole jets, and endwall secondary flows, significantly impacts endwall heat transfer and film cooling performance and leads to a more complicated flow field near endwall. To further understand the endwall flow physics behavior in this complicated flow field, the combined effects of film hole jets and multigap leakages (slashface jet and slot jet) were experimentally studied in a transient wind tunnel with a six-blade linear cascade (nonrotating). The endwall heat transfer was measured and recorded by the IR technique at inlet average turbulence intensity (Tu) of 7.5% and an exit Mach number (Maex) of 0.4. In addition, detailed numerical predictions were also performed to discuss the flow physics near endwall and the multigap leakages behavior. Results indicated that the slashface jet is an essential contributor to endwall film cooling performance in this endwall configuration. The slashface jet delays the development of the film hole jets, leading to an enhancement of film cooling performance downstream of the film holes. Increasing the mass flow ratio of the slashface jet (MFRslashface) can prevent the high-temperature mainstream ingestion, reduce the thermal failure risks, and increase the peak of film cooling effectiveness downstream of the endwall (167% at MFRslashface = 0.5%). Due to the limitation and hindrance impacts of the disk vortex (DV), the cavity vortex (CV), and the suction side leg of the horse-shoe vortex (HV,s), the slot flow is confined to a small region downstream of the slot gap.

References

1.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.10.1115/1.4023826
2.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Gas Turbines Power
,
100
(
3
), pp.
476
481
.10.1115/1.3446382
3.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
4.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
J. Eng. Power
,
99
(
1
), pp.
21
28
.10.1115/1.3446247
5.
Goldstein
,
R. J.
, and
Karni
,
J.
,
1984
, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
106
(
2
), pp.
260
267
.10.1115/1.3246667
6.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.10.1115/1.3262089
7.
Li
,
Z.
,
Bai
,
B.
,
Li
,
J.
,
Mao
,
S.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Endwall Heat Transfer and Cooling Performance of a Transonic Turbine Vane With Upstream Injection Flow
,”
ASME J. Turbomach.
,
144
(
4
), p.
041004
.10.1115/1.4052457
8.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.10.1115/1.1811099
9.
Thomas
,
M.
, and
Povey
,
T.
,
2017
, “
Improving Turbine Endwall Cooling Uniformity by Controlling Near-Wall Secondary Flows
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
231
(
14
), pp.
2689
2705
.10.1177/0954410016673092
10.
Shiau
,
C.
,
Sahin
,
I.
,
Ullah
,
I.
,
Han
,
J.
,
Mirzamoghadam
,
A. V.
,
Riahi
,
A.
, and
Stimpson
,
C.
,
2020
, “
Transonic Turbine Vane Endwall Film Cooling Using the Pressure-Sensitive Paint Measurement Technique
,”
ASME. J. Turbomach.
,
142
(
8
), p.
081004
.10.1115/1.4045990
11.
Shiau
,
C.
,
Chowdhury
,
N. H. K.
,
Yang
,
S.
,
Han
,
J.
,
MirzaMoghadam
,
A.
, and
Riahi
,
A.
,
2016
, “
Heat Transfer Coefficients and Film Cooling Effectiveness of Transonic Turbine Vane Suction Surface Using TSP Technique
,”
ASME
Paper No. GT2016-56264.10.1115/GT2016-56264
12.
Shiau
,
C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,”
ASME. J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
.10.1115/1.4042057
13.
Shiau
,
C.
,
Chen
,
A. F.
,
Han
,
J.
,
Azad
,
S.
, and
Lee
,
C.
,
2017
, “
Film Cooling Effectiveness Comparison on Full-Scale Turbine Vane Endwalls Using Pressure-Sensitive Paint Technique
,”
ASME. J. Turbomach.
,
140
(
2
), p.
021009
.10.1115/1.4038278
14.
Park
,
S.
,
Sohn
,
H. S.
,
Shin
,
S.
,
Ueda
,
O.
,
Moon
,
H. K.
, and
Cho
,
H. H.
,
2021
, “
Film Cooling Characteristics on Blade Platform With a Leakage Flow Through Mid-Passage Gap
,”
Int. J. Heat Mass Transfer
,
167
, p.
120800
.10.1016/j.ijheatmasstransfer.2020.120800
15.
Ranson
,
W.
,
Thole
,
K. A.
, and
Cunha
,
F.
,
2005
, “
Adiabatic Effectiveness Measurements and Predictions of Leakage Flows Along a Blade Endwall
,”
ASME J. Turbomach.
,
127
(
3
), pp.
609
618
.10.1115/1.1929809
16.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2017
, “
Heat Transfer and Film Cooling on a Contoured Blade Endwall With Platform Gap Leakage
,”
ASME J. Turbomach.
,
139
(
5
), p.
051002
.10.1115/1.4035202
17.
Zhang
,
W.
,
Li
,
F.
,
Xie
,
Y.
,
Ding
,
Y.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2023
, “
Experimental and Numerical Investigations of Discrete Film Holes Cooling Performance on a Blade Endwall With Mid-Passage Gap Leakage
,”
Int. J. Heat Mass Transfer
,
201
, p.
123550
.10.1016/j.ijheatmasstransfer.2022.123550
18.
Chowdhury
,
N. H.
,
Shiau
,
C.-C.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2017
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), p.
061003
.10.1115/1.4035162
19.
Papa
,
M.
,
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2011
, “
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041014
.10.1115/1.4003725
20.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2013
, “
Influence of Purge Flow Injection Angle on the Aerothermal Performance of a Rotor Blade Cascade
,”
ASME J. Turbomach.
,
136
(
4
), p.
041012
.10.1115/1.4025168
21.
Zhang
,
K.
,
Li
,
J.
,
Li
,
Z.
, and
Song
,
L.
,
2019
, “
Effects of Simulated Swirl Purge Flow and Mid-Passage Gap Leakage on Turbine Blade Platform Cooling and Suction Surface Phantom Cooling Performance
,”
Int. J. Heat Mass Transfer
,
129
, pp.
618
634
.10.1016/j.ijheatmasstransfer.2018.09.111
22.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
.10.1115/1.4037909
23.
Chen
,
A. F.
,
Shiau
,
C.-C.
, and
Han
,
J.-C.
,
2016
, “
Turbine Blade Platform Film Cooling With Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
139
(
3
), p.
031012
.10.1115/1.4034985
24.
Bai
,
B.
,
Li
,
Y.
,
Li
,
Z.
, and
Li
,
J.
,
2022
, “
Development of a Transient Test Facility for Evaluating the Aerothermodynamic Performance of Gas Turbine Cascades
,”
ASME
Paper No. GT2022-82573.10.1115/GT2022-82573
25.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat-Transfer Gauges: A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
.10.2514/3.3486
26.
Smith
,
D. E.
,
Bubb
,
J. V.
,
Popp
,
O.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer
,”
ASME
Paper No. GT2000-0202.10.1115/GT2000-0202
27.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.10.1115/1.4029098
28.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
J. Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
29.
Coleman
,
H. W.
,
Brown
,
K. H.
, and
Steele
,
W. G.
,
1995
, “
Estimating Uncertainty Intervals for Linear Regression
,”
AIAA
Paper No. 95-0796.10.2514/6.95-0796
30.
Xue
,
S.
,
2012
, “
Fan-Shaped Hole Film Cooling on Turbine Blade and Vane in a Transonic Cascade With High Freestream Turbulence
,”
Ph.D. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.http://hdl.handle.net/10919/77979
31.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W.
,
2022
, “
The Effects of Axisymmetric Convergent Contouring and Blowing Ratio on Endwall Film Cooling and Vane Pressure Side Surface Phantom Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021020
.10.1115/1.4052500
32.
Bai
,
B.
,
Li
,
Z.
,
Zhang
,
K.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W.
,
2023
, “
Effects of Hole Blockage on Endwall Film Cooling and Vane Phantom Cooling Performances of a Transonic Turbine Vane
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041001
.10.1115/1.4056094
33.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2022
, “
Turbine Vane Endwall Film Cooling and Pressure Side Phantom Cooling Performances With Upstream Coolant Flow at Various Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
11
), p.
111014
.10.1115/1.4054848
34.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2022
, “
Effects of Upstream Step Geometries on Endwall Film Cooling and Phantom Cooling Performances of a Transonic Turbine Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
12
), p.
121005
.10.1115/1.4055006
35.
Ornano
,
F.
, and
Povey
,
T.
,
2017
, “
Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High-Pressure Nozzle Guide Vane Endwall Cooling Systems
,”
ASME J. Turbomach.
,
139
(
12
), p.
121002
.10.1115/1.4037756
36.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2007
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
,
129
(
4
), pp.
782
790
.10.1115/1.2720506
You do not currently have access to this content.