Abstract

Turbopumps in reusable and low-cost liquid rocket engines require compact and simple hydrostatic (i.e., externally pressurized) bearings to support large static and dynamic loads at high shaft speeds with no bearing DN (diameter in millimeters times rpm) life limitation. Hydrostatic bearings are one of the key mechanical components for cryogenic turbopumps to improve their reliability and reusability. Hydrostatic bearings offer significantly enhanced durability with very low friction and wear while providing accurate rotor positioning as well as large load and static stiffness characteristics even working with low-viscosity liquids. This work measures static load characteristics of hydrostatic journal bearings in air (25 °C), water (from 25 °C to 70 °C), and liquid nitrogen (−197 °C). Air, water, and liquid nitrogen are used as test fluids for the test bearing to evaluate the effects of fluid properties and temperatures on the bearing performance. A complete set of applied static load, bearing eccentricity, and bearing supply pressure for each test fluid (i.e., air, water, and liquid nitrogen) is presented for the test hydrostatic bearing. Measurements show that the applied static load on the test bearing significantly affects the recorded journal eccentricity ratio, bearing flow rate, and bearing static stiffnesses. Predictions are in good agreement with measurements. The predictable performance of hydrostatic journal bearings in air, water, and liquid nitrogen can further their application in various cryogenic turbopumps for liquid rocket engines.

References

1.
Minick
,
A.
, and
Peery
,
S.
,
1998
, “
Design and Development of an Advanced Liquid Hydrogen Turbopump
,”
AIAA
Paper No. 98-3681.10.2514/6.98-3681
2.
Chaomleffel
,
J. P.
, and
Nicolas
,
D.
,
1986
, “
Experimental Investigation of Hybrid Journal Bearings
,”
Tribol. Int.
,
19
(
5
), pp.
253
259
.10.1016/0301-679X(86)90004-6
3.
Hannum
,
N. P.
, and
Nielson
,
C. E.
,
1983
, “
The Performance and Application of High Speed Long Life LH2 Hybrid Bearings for Reusable Rocket Engine Turbomachinery
,”
AIAA
Paper No. 83-1389.10.2514/6.83-1389
4.
Spica
,
P. W.
,
Hannum
,
N. P.
, and
Meyer
,
S. D.
,
1986
, “
Evaluation of a Hybrid Hydrostatic Bearing for Cryogenic Turbopump Application
,” NASA, Cleveland, OH, Report No.
TM-87255
.https://ntrs.nasa.gov/citations/19860022177
5.
Murphy
,
B. T.
, and
Wagner
,
M. N.
,
1991
, “
Measurement of Rotordynamic Coefficients for a Hydrostatic Radial Bearing
,”
ASME J. Tribol.
,
113
(
3
), pp.
518
525
.10.1115/1.2920654
6.
Scharrer
,
J. K.
,
Tellier
,
J. G.
, and
Hibbs
,
R. I.
,
1992
, “
A Study of the Transient Performance of Annular Hydrostatic Journal Bearings in Liquid Oxygen
,”
AIAA
Paper No. 92-3404.10.2514/6.92-3404
7.
Pelfrey
,
P. C.
, and
Sishtla
,
V. M.
,
1996
, “
Investigation of Hydrostatic Bearings Operating in a Turbulent, Compressible Liquid
,”
AIAA
Paper No. 96-3103.10.2514/6.96-3103
8.
Rohde
,
S. M.
, and
Ezzat
,
H. A.
,
1976
, “
On the Dynamic Behavior of Hybrid Journal Bearings
,”
ASME J. Lubr. Technol.
,
98
(
1
), pp.
90
94
.10.1115/1.3452788
9.
Okayasu
,
A.
,
Ohta
,
T.
,
Kamijyo
,
A.
, and
Yamada
,
H.
,
2002
, “
Key Technology for Reusable Rocket Engine Turbopump
,”
Acta Astronaut.
,
50
(
6
), pp.
351
355
.10.1016/S0094-5765(01)00163-1
10.
Ohta
,
T.
,
Kitamura
,
A.
, and
Ogata
,
H.
,
1999
, “
LH2 Turbopump Test With Hydrostatic Bearing
,”
AIAA
Paper No. 99-2195.10.2514/6.99-2195
11.
Reddecliff
,
J. M.
, and
Vohr
,
J. H.
,
1969
, “
Hydrostatic Bearings for Cryogenic Rocket Engine Turbopumps
,”
ASME J. Lubr. Technol.
,
91
(
3
), pp.
557
575
.10.1115/1.3554989
12.
San Andrés
,
L.
,
1995
, “
Thermohydrodynamic Analysis of Fluid Film Bearings for Cryogenic Applications
,”
AIAA J. Propul. Power
,
11
(
5
), pp.
964
972
.10.2514/3.23924
13.
San Andrés
,
L.
,
2000
, “
Bulk Flow Analysis of Hybrid Thrust Bearings for Process Fluid Applications
,”
ASME J. Tribol.
,
122
(
1
), pp.
170
180
.10.1115/1.555340
14.
Nolan
,
S. A.
,
Hibbs
,
R. I.
, and
Genge
,
G. G.
,
1993
, “
Hotfire Testing of a SSME HPOTP With an Annular Hydrostatic Bearing
,”
AIAA
Paper No. 93-2356.10.2514/6.93-2356
15.
Gibson
,
H. G.
,
2019
, “
Design Guide for Bearings Used in Cryogenic Turbopumps and Test Rigs
,” NASA, Huntsville, AL, Report No.
NASA/TP-2019-220549
.https://ntrs.nasa.gov/citations/20200000047
16.
San Andrés
,
L.
,
2009
, “
Hydrostatic Bearings
,”
Modern Lubrication Theory, Notes 12(b)
,
Libraries Texas A&M University Repository, Texas A&M University Library
,
College Station, TX
, 2022.
17.
Braun
,
M. J.
,
Wheeler
,
R. L.
, III
, and
Hendricks
,
R. C.
,
1987
, “
A Fully Coupled Variable Properties Thermohydraulic Model for a Cryogenic Hydrostatic Journal Bearing
,”
ASME J. Tribol.
,
109
(
3
), pp.
405
414
.10.1115/1.3261459
18.
San Andrés
,
L.
,
1991
, “
Effects of Fluid Compressibility on the Dynamic Response of Hydrostatic Journal Bearings
,”
Wear
,
146
, pp.
269
283
.10.1016/0043-1648(91)90068-6
19.
Rouvas
,
C.
, and
Childs
,
D. W.
,
1993
, “
A Parameter Identification Method for the Rotordynamic Coefficients of a High Reynolds Number Hydrostatic Bearing
,”
ASME J. Vib. Acoust.
,
115
(
3
), pp.
264
270
.10.1115/1.2930343
20.
Kurtin
,
K. A.
,
Childs
,
D.
,
San Andres
,
L.
, and
Hale
,
K.
,
1993
, “
Experimental Versus Theoretical Characteristics of a High-Speed Hybrid (Combination Hydrostatic and Hydrodynamic) Bearing
,”
ASME J. Tribol.
,
115
(
1
), pp.
160
168
.10.1115/1.2920971
21.
Franchek
,
N. M.
,
Childs
,
D. W.
, and
San Andrés
,
L.
,
1994
, “
Experimental Test Results for Four High-Speed, High-Pressure, Orifice-Compensated Hybrid Bearings
,”
ASME J. Tribol.
,
116
(
1
), pp.
147
153
.10.1115/1.2927031
22.
Childs
,
D.
, and
Hale
,
K.
,
1994
, “
A Test Apparatus and Facility to Identify the Rotordynamic Coefficients of High-Speed Hydrostatic Bearings
,”
ASME J. Tribol.
,
116
(
2
), pp.
337
343
.10.1115/1.2927226
23.
Yang
,
Z.
,
San Andrés
,
L.
, and
Childs
,
D. W.
,
1996
, “
Thermal Effects in Liquid Oxygen Hydrostatic Journal Bearings
,”
Tribol. Trans.
,
39
(
3
), pp.
654
662
.10.1080/10402009608983579
24.
Rudloff
,
L.
,
Arghir
,
M.
,
Bonneau
,
O.
,
Guingo
,
S.
,
Chemla
,
G.
, and
Renard
,
E.
,
2012
, “
Experimental Analysis of the Dynamic Characteristics of a Hybrid Aerostatic Bearing
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082503
.10.1115/1.4006060
25.
Arghir
,
M.
,
Hassini
,
M.
,
Balducchi
,
F.
, and
Gauthier
,
R.
,
2016
, “
Synthesis of Experimental and Theoretical Analysis of Pneumatic Hammer Instability in an Aerostatic Bearing
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021602
.10.1115/1.4031322
26.
Hassini
,
M.
,
Arghir
,
M.
, and
Frocot
,
M.
,
2012
, “
Comparison Between Numerical and Experimental Dynamic Coefficients of a Hybrid Aerostatic Bearing
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122506
.10.1115/1.4007375
27.
Du
,
J.
, and
Liang
,
G.
,
2019
, “
Performance Comparative Analysis of Hydrostatic Bearings Lubricated With Low-Viscosity Cryogenic Fluids
,”
Tribol. Int.
,
137
, pp.
139
151
.10.1016/j.triboint.2019.03.061
28.
Sin
,
S.
,
2022
, “
Static Load Characteristics of Hybrid Fluid Film Journal Bearings: Measurements With Air, Water, and Liquid Nitrogen
,” M.S. thesis,
Hanyang University
,
Seoul, South Korea
.
29.
Yi
,
H.
,
Jung
,
H.
,
Kim
,
K.
, and
Ryu
,
K.
,
2022
, “
Static Load Characteristics of Hydrostatic Journal Bearings: Measurements and Predictions
,”
Sensors
,
22
(
19
), p.
7466
.10.3390/s22197466
30.
Oike
,
M.
,
Kikuchi
,
M.
,
Takada
,
S.
,
Sudo
,
T.
, and
Takano
,
T.
,
2012
, “
Robustness of Cryogenic Hybrid Journal Bearings
,”
Tribol. Online
,
7
(
3
), pp.
171
178
.10.2474/trol.7.171
31.
Lemmon
,
E. W.
,
Bell
,
I.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
, 2009,
Thermophysical Properties of Fluid Systems
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
32.
Jung
,
H.
,
Sin
,
S.
,
Heo
,
J.
,
Wee
,
M.
, and
Ryu
,
K.
,
2022
, “
On the Pneumatic Hammer of Hybrid Gas Bearings: Measurements and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121011
.10.1115/1.4055485
33.
San Andrés
,
L.
, and
Wilde
,
D.
,
2001
, “
Finite Element Analysis of Gas Bearings for Oil-Free Turbomachinery
,”
Revne Eur. Elém. Finis
,
10
(
6–7
), pp.
769
790
.https://rotorlab.tamu.edu/TRIBGROUP/TPS%20papers/2001%20FE_Revuew%20FE-GBs%20Deb.pdf
34.
San Andrés
,
L. A.
,
1992
, “
Analysis of Hydrostatic Journal Bearings With End Seals
,”
ASME J. Tribol.
,
114
(
4
), pp.
755
764
.10.1115/1.2920945
35.
San Andrés
,
L.
, and
Zhu
,
X.
,
2003
, “
Experimental Response of a Rotor Supported on Flexure Pivot Hydrostatic Pad Gas Bearings
,” Research Progress Report to the Turbomachinery Research Consortium,
Turbomachinery Laboratory of Texas A&M University
,
College Station, TX
.https://rotorlab.tamu.edu/TRIBGROUP/TRC%2002-12%20reports/2003%20Zhu-San%20Andres-Experimental%20Response%20of%20a%20Rotor%20Supported%20on%20Flexure%20Pivot%20Hydrostatic%20Pad%20Gas%20Bearings.pdf
You do not currently have access to this content.