Abstract

Whoosh is typically the primary noise concern for turbocharger centrifugal compressors without ported shroud recirculating casing treatments, utilized for spark-ignition automotive applications. Whoosh is characterized by broadband elevation of noise in approximately the 4–13 kHz range, where the lower frequency boundary is dictated by the cut-on frequency of the first multidimensional acoustic mode. At mid-to-low compressor flow rates, swirling, reversed flow emanates from the leading-edge tip region of the main impeller blades, comprising an annular zone at the inducer plane. High velocity gradients are observed near the shear layer between the bidirectional forward and reverse flow which results in the formation of rotating instability cells. Whoosh noise is generated due to the interaction of these rotating instabilities with the leading edge of main impeller blades. Along a line of constant rotational speed, whoosh noise exhibits a dome-like character, where its maximum value occurs in the mid-to-low flow region and the levels decrease at elevated and reduced mass flow rates. To provide insight into the variation of broadband whoosh noise with flowrate, this work includes experimentally validated computational fluid dynamics predictions for five mass flow rates at a fixed rotational speed. These predictions span the constant speed flow range from just below the peak efficiency to near the surge boundary. Computational predictions capture the physical mechanism responsible for the dome-like character of whoosh noise as a function of flowrate at a given rotational speed.

References

1.
Figurella
,
N.
,
Dehner
,
R.
,
Selamet
,
A.
,
Miazgowicz
,
K.
,
Karim
,
A.
, and
Host
,
R.
,
2015
, “
Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance
,”
SAE
Paper No. 2015-01-2307.10.4271/2015-01-2307
2.
Figurella
,
N.
,
Dehner
,
R.
,
Selamet
,
A.
,
Tallio
,
K.
,
Miazgowicz
,
K.
,
Wade
,
R.
,
Karim
,
A.
,
Keller
,
P.
, and
Shutty
,
J.
,
2014
, “
Effect of Inlet Guide Vanes on Centrifugal Compressor Acoustics and Performance
,”
Noise Control Eng. J.
,
62
(
4
), pp.
232
237
.10.3397/1/376223
3.
Figurella
,
N.
,
Dehner
,
R.
,
Selamet
,
A.
,
Tallio
,
K.
,
Miazgowicz
,
K.
, and
Wade
,
R.
,
2014
, “
Noise at the Mid to High Flow Range of a Turbocharger Compressor
,”
Noise Control Eng. J.
,
62
(
5
), pp.
306
312
.10.3397/1/376229
4.
Teng
,
C.
, and
Homco
,
S.
,
2009
, “
Investigation of Compressor Whoosh Noise in Automotive Turbochargers
,”
SAE
Paper No. 2009-01-2053.10.4271/2009-01-2053
5.
Dehner
,
R.
,
Selamet
,
A.
,
Banerjee
,
D.
,
Sriganesh
,
P.
,
Miazgowicz
,
K.
,
Karim
,
A.
,
Morelli
,
A.
,
Tierman
,
C.
,
Harris
,
T.
, and
Bleiziffer
,
M.
,
2019
, “
Case Study: An Experimental Noise Reduction Study of an Extended Flow Range Automotive Turbocharger Centrifugal Compressor
,”
Noise Control Eng. J.
,
67
(
2
), pp.
117
126
.10.3397/1/376711
6.
Dehner
,
R.
,
Selamet
,
A.
,
Steiger
,
M.
,
Miazgowicz
,
K.
, and
Karim
,
A.
,
2017
, “
The Effect of Ported Shroud Recirculating Casing Treatment on Turbocharger Centrifugal Compressor Acoustics
,”
SAE
Paper No. 2017-01-1796.10.4271/2017-01-1796
7.
Dehner
,
R.
, and
Selamet
,
A.
,
2019
, “
Prediction of Broadband Noise in an Automotive Centrifugal Compressor With Three-Dimensional Computational Fluid Dynamics Detached Eddy Simulations
,”
SAE
Paper No. 2019-01-1487.10.4271/2019-01-1487
8.
Dehner
,
R.
,
Sriganesh
,
P.
,
Selamet
,
A.
, and
Miazgowicz
,
K.
,
2021
, “
Generation Mechanism of Broadband Whoosh Noise in an Automotive Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
143
(
12
), p.
121003
.10.1115/1.4051274
9.
Pardowitz
,
B.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2012
, “
Time-Resolved Rotating Instability Waves in an Annular Cascade
,”
AIAA
Paper No. 2012-2132.10.2514/6.2012-2132
10.
Pardowitz
,
B.
,
Tapken
,
U.
,
Sorge
,
R.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2014
, “
Rotating Instability in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena
,”
ASME J. Turbomach.
,
136
(
6
), p.
061017
.10.1115/1.4025734
11.
Pardowitz
,
B.
,
Tapken
,
U.
,
Neuhaus
,
L.
, and
Enghardt
,
L.
,
2015
, “
Experiments on an Axial Fan Stage: Time-Resolved Analysis of Rotating Instability Modes
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062505
.10.1115/1.4028686
12.
Munjal
,
M. L.
,
2014
,
Acoustics of Ducts and Mufflers
,
Wiley
,
New York
.
13.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.10.1006/jsvi.1997.0902
14.
Raitor
,
T.
, and
Neise
,
W.
,
2008
, “
Sound Generation in Centrifugal Compressors
,”
J. Sound Vib.
,
314
(
3–5
), pp.
738
756
.10.1016/j.jsv.2008.01.034
15.
Banerjee
,
D.
,
Dehner
,
R.
,
Selamet
,
A.
,
Tallio
,
K.
,
Miazgowicz
,
K.
,
Keller
,
P.
, and
Shutty
,
J.
,
2019
, “
Investigation of Flow Field at the Inlet of a Turbocharger Compressor Using Digital Particle Inage Velocimetry
,”
ASME J. Turbomach.
,
141
(
12
), p.
121003
.10.1115/1.4044608
16.
Siemens
,
2018
, “
STAR-CCM+ (Version 12.06.010)
,”
Siemens
,
Melville, NY
.
17.
Ohio Supercomputer Center
,
2016
, “
Owens Supercomputer
,”
Ohio Supercomputer Center
,
Columbus, OH
.
18.
Dehner
,
R.
,
2016
, “
An Experimental and Computational Study of Surge in Turbocharger Compression Systems
,”
Ph.D. dissertation
,
Department of Mechanical and Aerospace Engineering, The Ohio State University
,
Columbus, OH
.https://www.researchgate.net/publication/311847329_An_Experimental_and_Computational_Study_of_Surge_in_Turbocharger_Compression_Systems
You do not currently have access to this content.