Abstract

An improved efficient uncertainty quantification (UQ) analysis framework is proposed by the combination of sparse polynomial chaos expansion (PCE) and universal Kriging (UK) metamodel to obtain the surrogate model (UK-PCE). Moreover, a challenging analytical test function and an engineering test are considered to investigate the response performance of UK-PCE method. The results show that the UK-PCE method reduces the computational cost by more than 70% in comparison to the typical PCE method. Then this method was applied to the UQ of the aerodynamic and heat transfer performance of GE-E3 rotor blade squealer tip. Additionally, a series of uncertainty quantities visualization methods based on the data mining method, parallel computing method, and Delaunay triangulation method is proposed to reveal more enlightening uncertainty phenomena in the actual operation. The results of UQ show that under the influence of uncertain inputs, the leakage flow rate and downstream entropy increase will be significantly increased. The statistical average of tip heat flux has increased by 8.56% relative to the design value, and the probability of it deviating from the design value by 10% is as high as 43.27%. In addition, the three-dimensional tip heat flux deviation distributions calculated by the proposed uncertainty quantities visualization method reveal a coupling of the hot corrosion and thermal fatigue of the squealer tip. It is also indicated that under the influence of the uncertain inputs, there is a marked increase in blade tip flux, and the blade tip flux deviation has been maintained at a high value, about 13.0%. The results of sensitivity analysis show that the largest contributor to the uncertainty of the blade tip aerodynamic performance is the tip clearance deviation and its variance index to the uncertainty of leakage flow rate and downstream entropy increase is as high as 88.21% and 62.63%. Therefore, the geometric accuracy of the tip clearance should be strictly ensured in the turbine blade assembly and marching process. The influence of the inlet total temperature deviation on the uncertainty of the heat transfer performance of the squealer tip must also be taken into account. So a satisfactory control system should be designed in the actual operation of the gas turbine to make sure that the fluctuation of inlet total temperature can be attenuated rapidly.

References

1.
Town
,
J.
,
Straub
,
D.
,
Black
,
J.
,
Thole
,
K. A.
, and
Shih
,
T. I.
,
2018
, “
State-of-the-Art Cooling Technology for a Turbine Rotor Blade
,”
ASME J. Turbomach.
,
140
(
7
), p.
071007
.10.1115/1.4039942
2.
Denton
,
J. D.
,
1993
,
Loss Mechanisms in Turbomachines
,
American Society of Mechanical Engineers
,
New York
.
3.
He
,
K.
,
2017
, “
Investigations of Film Cooling and Heat Transfer on a Turbine Blade Squealer Tip
,”
Appl. Therm. Eng.
,
110
, pp.
630
647
.10.1016/j.applthermaleng.2016.08.173
4.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.10.2514/1.11818
5.
Wang
,
H.
,
Tao
,
Z.
,
Zhou
,
Z.
,
Zhao
,
G.
,
Han
,
F.
, and
Li
,
H.
,
2019
, “
An Investigation for the Turbine Blade Film Cooling Performance on the Suction Side Tip Region Under Rotating Condition
,”
Appl. Therm. Eng.
,
150
, pp.
864
874
.10.1016/j.applthermaleng.2018.12.102
6.
Nasir
,
H.
,
Ekkad
,
S. V.
,
Kontrovitz
,
D. M.
,
Bunker
,
R. S.
, and
Prakash
,
C.
,
2004
, “
Effect of Tip Gap and Squealer Geometry on Detailed Heat Transfer Measurements Over a High Pressure Turbine Rotor Blade Tip
,”
ASME J. Turbomach.
,
126
(
2
), pp.
221
228
.10.1115/1.1731416
7.
Ma
,
H.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p. 052506.10.1115/GT2016-57579
8.
Ma
,
H.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part II: Analysis of Aerothermal Interaction Physics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052507
.10.1115/1.4035200
9.
Li
,
W.
,
2014
, “
Squealer Tip Leakage Flow Characteristics in Transonic Condition
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
042601
.10.1115/1.4025918
10.
Massini
,
M.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2011
, “
A New Intermittent Aspirated Probe for the Measurement of Stagnation Quantities in High Temperature Gases
,”
ASME J. Turbomach.
,
133
(
4
), p. 041022.10.1115/1.4002414
11.
Dow
,
E. A.
, and
Wang
,
Q.
,
2014
, “
Optimal Design and Tolerancing of Compressor Blades Subject to Manufacturing Variability
,”
AIAA
Paper No. 1008.10.2514/6.2014-1008
12.
Luo
,
J.
, and
Liu
,
F.
,
2018
, “
Statistical Evaluation of Performance Impact of Manufacturing Variability by an Adjoint Method
,”
Aerosp. Sci. Technol.
,
77
, pp.
471
484
.10.1016/j.ast.2018.03.030
13.
Fu
,
X.
, and
Zhang
,
X.
,
2018
, “
Failure Probability Estimation of Gas Supply Using the Central Moment Method in an Integrated Energy System
,”
Appl. Energy
,
219
, pp.
1
10
.10.1016/j.apenergy.2018.03.038
14.
Montomoli
,
F.
,
2015
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer International Publishing
,
New York
.
15.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F.
,
2018
, “
Uncertainty Quantification of NOx Emission Due to Operating Conditions and Chemical Kinetic Parameters in a Premixed Burner
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121005
.10.1115/1.4040897
16.
Yondo
,
R.
,
Andrés
,
E.
, and
Valero
,
E.
,
2018
, “
A Review on Design of Experiments and Surrogate Models in Aircraft Real-Time and Many-Query Aerodynamic Analyses
,”
Prog. Aerosp. Sci.
,
96
, pp.
23
61
.10.1016/j.paerosci.2017.11.003
17.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F.
,
2019
, “
Uncertainty Quantification of NOx and CO Emissions in a Swirl-Stabilized Burner
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101014
.10.1115/1.4044204
18.
Du
,
X.
, and
Leifsson
,
L.
,
2019
, “
Optimum Aerodynamic Shape Design Under Uncertainty by Utility Theory and Metamodeling
,”
Aerosp. Sci. Technol.
,
95
, p.
105464
.10.1016/j.ast.2019.105464
19.
Fei
,
C.-W.
,
Li
,
H.
,
Liu
,
H.-T.
,
Lu
,
C.
,
Keshtegar
,
B.
, and
An
,
L.-Q.
,
2020
, “
Multilevel Nested Reliability-Based Design Optimization With Hybrid Intelligent Regression for Operating Assembly Relationship
,”
Aerosp. Sci. Technol.
,
103
, p.
105906
.10.1016/j.ast.2020.105906
20.
Wang
,
C.
,
Sun
,
X.
, and
Zhang
,
J.
,
2019
, “
Uncertainty Analysis of Trench Film Cooling on Flat Plate
,”
Appl. Therm. Eng.
,
156
, pp.
562
575
.10.1016/j.applthermaleng.2019.04.099
21.
De Maesschalck
,
C.
,
Lacor
,
C.
,
Paniagua
,
G.
,
Lavagnoli
,
S.
,
Remiot
,
A.
, and
Bricteux
,
L.
,
2017
, “
Performance Robustness of Turbine Squealer Tip Designs Due to Manufacturing and Engine Operation
,”
J. Propul Power
,
33
(
3
), pp.
740
749
.10.2514/1.B36081
22.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids
,
46
(
1
), pp.
362
368
.10.1016/j.compfluid.2010.11.031
23.
D'Ammaro
,
A.
, and
Montomoli
,
F.
,
2013
, “
Uncertainty Quantification and Film Cooling
,”
Comput. Fluids
,
71
, pp.
320
326
.10.1016/j.compfluid.2012.10.021
24.
Luo
,
J.
,
Xia
,
Z.
, and
Liu
,
F.
,
2021
, “
Robust Design Optimization Considering Inlet Flow Angle Variations of a Turbine Cascade
,”
Aerosp. Sci. Technol
,
116
, p.
106893
.10.1016/j.ast.2021.106893
25.
Wang
,
C.
,
2009
, “
Optimization of Controllers for Gas Turbine Based on Probabilistic Robustness
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), p.
054502
.10.1115/1.2981174
26.
Javed
,
A.
,
Pecnik
,
R.
, and
Van Buijtenen
,
J. P.
,
2016
, “
Optimization of a Centrifugal Compressor Impeller for Robustness to Manufacturing Uncertainties
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112101
.10.1115/1.4033185
27.
Le Maı̂ tre
,
O. P.
,
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
,
2001
, “
A Stochastic Projection Method for Fluid Flow: I. basic Formulation
,”
J. Comput. Phys.
,
173
(
2
), pp.
481
511
.10.1006/jcph.2001.6889
28.
Mohammadi
,
A.
, and
Raisee
,
M.
,
2017
, “
Effects of Operational and Geometrical Uncertainties on Heat Transfer and Pressure Drop of Ribbed Passages
,”
Appl. Therm. Eng.
,
125
, pp.
686
701
.10.1016/j.applthermaleng.2017.07.047
29.
Karimi
,
M. S.
,
Salehi
,
S.
,
Raisee
,
M.
,
Hendrick
,
P.
, and
Nourbakhsh
,
A.
,
2019
, “
Probabilistic CFD Computations of Gas Turbine Vane Under Uncertain Operational Conditions
,”
Appl. Therm. Eng.
,
148
, pp.
754
767
.10.1016/j.applthermaleng.2018.11.072
30.
Daum
,
F.
, and
Huang
,
J.
,
2003
,
Curse of Dimensionality and Particle Filters
,
IEEE
,
Montana
.
31.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat-Transfer Coefficients of a Turbine Blade-Tip and Near-Tip Regions
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
297
303
.10.2514/2.6776
32.
Zou
,
Z.
,
Shao
,
F.
,
Li
,
Y.
,
Zhang
,
W.
, and
Berglund
,
A.
,
2017
, “
Dominant Flow Structure in the Squealer Tip Gap and Its Impact on Turbine Aerodynamic Performance
,”
Energy
,
138
, pp.
167
184
.10.1016/j.energy.2017.07.047
33.
Jiang
,
S.
,
Li
,
Z.
, and
Li
,
J.
,
2019
, “
Effects of the Squealer Winglet Structures on the Heat Transfer Characteristics and Aerodynamic Performance of Turbine Blade Tip
,”
J. Heat Mass Transfer
,
139
, pp.
860
872
.10.1016/j.ijheatmasstransfer.2019.05.064
34.
Schobi
,
R.
,
Sudret
,
B.
, and
Wiart
,
J.
,
2015
, “
Polynomial-Chaos-Based Kriging
,”
Int. J. Uncertain. Quantif.
,
5
(
2
), pp.
171
193
.10.1615/Int.J.UncertaintyQuantification.2015012467
35.
Cunha
,
A.
,
Nasser
,
R.
,
Sampaio
,
R.
,
Lopes
,
H.
, and
Breitman
,
K.
,
2014
, “
Uncertainty Quantification Through the Monte Carlo Method in a Cloud Computing Setting
,”
Comput. Phys. Commun.
,
185
(
5
), pp.
1355
1363
.10.1016/j.cpc.2014.01.006
36.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.10.2307/2371268
37.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM
,”
J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
38.
Huang
,
M.
,
Li
,
Z.
,
Li
,
J.
, and
Song
,
L.
,
2022
, “
Uncertainty Quantification and Sensitivity Analysis of Aerothermal Performance for the Turbine Blade Squealer Tip
,”
Int. J. Therm. Sci.
,
175
, p.
107460
.10.1016/j.ijthermalsci.2022.107460
39.
Armstrong
,
M.
,
1984
, “
Problems With Universal Kriging
,”
J. Int. Ass. Math. Geol.
,
16
(
1
), pp.
101
108
.10.1007/BF01036241
40.
Efron
,
B.
,
Hastie
,
T.
,
Johnstone
,
I.
, and
Tibshirani
,
R.
,
2004
, “
Least Angle Regression
,”
Ann. Stat.
,
32
(
2
), pp.
407
499
.10.1214/009053604000000067
41.
Parakkat
,
A. D.
,
Pundarikaksha
,
U. B.
, and
Muthuganapathy
,
R.
,
2018
, “
A Delaunay Triangulation Based Approach for Cleaning Rough Sketches
,”
Comput. Graph
,
74
, pp.
171
181
.10.1016/j.cag.2018.05.011
42.
Cherry
,
D. G.
,
Gay
,
C. H.
, and
Lenahan
,
D. T.
,
1982
,
Low Pressure Turbine Test Hardware Detailed Design Report
,
National Aeronautics and Space Administration
,
Cleveland, OH
.
43.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
263
271
.10.1115/1.555443
44.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.10.1115/1.1622712
45.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Safe
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
46.
Wang
,
Y.
,
Song
,
Y.
,
Yu
,
J.
, and
Chen
,
F.
,
2018
, “
Effect of Cooling Injection on the Leakage Flow of a Turbine Cascade With Honeycomb Tip
,”
Appl. Therm. Eng.
,
133
, pp.
690
703
.10.1016/j.applthermaleng.2018.01.090
47.
Tao
,
Z.
,
2021
, “
Uncertainty Quantification of Aero-Thermal Performance of a Blade Endwall Considering Slot Geometry Deviation and Mainstream Fluctuation
,”
ASME J. Turbomach.
,
143
(
11
), p.
111013
.10.1115/1.4051416
48.
Xiao
,
Y. Q.
,
Liu
,
Z. Y.
,
Zhu
,
W.
, and
Peng
,
X. M.
,
2021
, “
Reliability Assessment and Lifetime Prediction of TBCs on Gas Turbine Blades Considering Thermal Mismatch and Interfacial Oxidation
,”
Surf. Coat. Technol.
,
423
, p.
127572
.10.1016/j.surfcoat.2021.127572
49.
Kargarnejad
,
S.
, and
Djavanroodi
,
F.
,
2012
, “
Failure Assessment of Nimonic 80A Gas Turbine Blade
,”
Eng. Failure Anal.
,
26
, pp.
211
219
.10.1016/j.engfailanal.2012.05.028
You do not currently have access to this content.