Abstract

The first part of the paper presents commissioning of a single-stage high-pressure (HP) turbine employed in a series of extensive experiments to study the aerodynamics and heat transfer on the rotor surface and casing liner. The Oxford Turbine Research Facility (OTRF), a high-speed rotating transient test facility has the capability to take unsteady aerodynamic and heat transfer measurements at engine representative conditions with a variety of inlet temperature profiles including radial distortion and swirl. A temperature profile survey was conducted at the inlet of the HP nozzle guide vane (NGV). Static and total pressure and temperature measurements have been taken at various locations on the rig including NGV surface, inlet and exit, and rotor exit to establish rig operating conditions. Detailed description of mass flow rate measurements along with calculation of heat loss factor in the rig is presented. The second part of the paper presents a parametric study performed to improve heat transfer measurement calculations from high-frequency response thin-film gauges. The effect of parameters like material properties and thickness of substrate on heat flux has been studied. A detailed uncertainty analysis for heat flux is also presented. A thermal model calibrated with analytical solutions has been developed to optimize thin-film gauge configurations and to study side-conduction effects.

References

1.
Arts
,
T.
ed.,
2004
,
Turbine Blade Tip Design and Tip Clearance Treatment: January 19–23, 2003
,
Von Karman Institute for Fluid Dynamics
, Sint-Genesius-Rode, Belgium.
2.
Sharma
,
O. P.
, and
Stetson
,
G. M.
,
1998
, “
Impact of Combustor Generated Temperature Distortions on Performance, Durability and Structural Integrity of Turbines
,” VKI Lecture Series 1998-02, Brussels, Belgium, Feb. 9–12.
3.
Hilditch
,
M. A.
,
Fowler
,
A.
,
Jones
,
T. V.
,
Chana
,
K. S.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
,
Hogg
,
S. I.
,
Anderson
,
S. J.
, and
Smith
,
G. C.
,
1994
, “
Installation of a Turbine Stage in the Pyestock Isentropic Light Piston Facility
,”
ASME
Paper No. 94-GT-277.10.1115/94-GT-277
4.
Shahpar
,
S.
, and
Caloni
,
S.
,
2013
, “
Aerodynamic Optimization of High-Pressure Turbines for Lean-Burn Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p. 055001.10.1115/1.4007977
5.
Beard
,
P. F.
,
Povey
,
T.
, and
Ireland
,
P. T.
,
2008
, “
Mass Flow Rate Measurement in a Transonic Turbine Test Facility With Temperature Distortion and Swirl
,”
Flow Meas. Instrum.
,
19
(
5
), pp.
315
324
.10.1016/j.flowmeasinst.2008.03.004
6.
Adams
,
M. G.
,
Povey
,
T.
,
Hall
,
B. F.
,
Cardwell
,
D. N.
,
Chana
,
K. S.
, and
Beard
,
P. F.
,
2020
, “
Commissioning of a Combined Hot-Streak and Swirl Profile Generator in a Transonic Turbine Test Facility
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p. 031008.10.1115/1.4044224
7.
Chana
,
K. S.
,
1992
, “
Heat Transfer and Aerodynamics of a High Rim Speed Turbine Nozzle Guide Vane With Profiled End Walls
,”
ASME
Paper No. 92-GT-243.10.1115/92-GT-243
8.
Hall
,
B. F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2014
, “
Design of a Nonreacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p. 081501.10.1115/1.4026809
9.
Beard
,
P. F.
,
2010
, On Transient Turbine Efficiency Measurements With Engine Representative Inlet Flows, DPhil. Thesis,
University of Oxford
, Oxford, UK.
10.
Chana
,
K. S.
, and
Jones
,
T. V.
,
2003
, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
J. Turbomach.
,
125
(
3
), pp.
513
520
.10.1115/1.1575253
11.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
,
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities (No. AGARD-AG-165)
,
Advisory Group for Aerospace Research and Development Paris (France)
, Neuilly-sur-Seine, France.
12.
Collins
,
M.
,
Chana
,
K.
, and
Povey
,
T.
,
2015
, “
New Technique for the Fabrication of Miniature Thin Film Heat Flux Gauges
,”
Meas. Sci. Technol.
26
(
2
), p.
025303
.10.1088/0957-0233/26/2/025303
13.
Piccini
,
E.
,
Guo
,
S. M.
, and
Jones
,
T. V.
,
2000
, “
The Development of a New Direct-Heat-Flux Gauge for Heat-Transfer Facilities
,”
Meas. Sci. Technol.
,
11
(
4
), pp.
342
349
.10.1088/0957-0233/11/4/302
14.
Usandizaga
,
I.
,
Beard
,
P.
,
Chana
,
K.
, and
Povey
,
T.
,
2021
, “
Heated Thin Film Gauge Arrangements to Reduce Uncertainty in Transient Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
32
(
1
), p.
015906
.10.1088/1361-6501/abc027
15.
Neugebauer
,
C. A.
, and
Webb
,
M. B.
,
1962
, “
Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films
,”
J. Appl. Phys.
,
33
(
1
), pp.
74
82
.10.1063/1.1728531
16.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
,
1987
, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gauges
,”
Int. Journal Heat Mass Transfer
,
30
(
6
), pp.
1159
1168
.10.1016/0017-9310(87)90045-7
17.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,” ASME
J. Turbomach.
,
130
(
2
), p.
021023
.10.1115/1.2752188
18.
Kline
,
S. J.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.2017&rep=rep1&type=pdf
19.
Moffat
,
R. J.
,
1982
, “Contributions to the Theory of Single-Sample Uncertainty Analysis,”
ASME J. Fluids Eng.
, 104(2), pp.
250
258
.10.1115/1.3241818
You do not currently have access to this content.