Abstract

Lean premixed combustion is the state-of-the-art technology to achieve ultra low NOx emissions in stationary gas turbines. However, lean premixed flames are susceptible to thermoacoustic instabilities, lean blowout, and flashback. The design of such a combustion system is thus always related to the balancing between the levels of emissions and flame stability. Data-driven optimization methods and the adaptation of models through artificial intelligence have experienced a surge in development in the past years. The goal of this study is to show the potential of these methods for gas turbine burner development. A special pilot burner that features 61 different positions of fuel injection, manufactured by means of selective laser melting is used to modify the gas mixture close to the flame anchoring position. Each of the injector lines is equipped with an individual valve, such that the distribution of fuel-air mixture can be modified variously. Installed into an industrial MGT6000 swirl combustor, a data-driven optimization method is used to find an optimal subset of injection locations by automated experiments. The method uses a surrogate model that is based on Gaussian processes regression. It is adopted for experimental optimization, keeping measurement efforts to a minimum. The optimizer controls the fuel valves and uses live measurements to find a distribution that generates minimal NOx emissions while ensuring flame stability. The solutions found by the optimization scheme are analyzed and advantages and limitations of the approach are discussed.

References

1.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.10.1080/00102209208947221
2.
Mongia
,
H. C.
,
Held
,
T. J.
,
Hsiao
,
G. C.
, and
Pandalai
,
R. P.
,
2003
, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
822
829
.10.2514/2.6197
3.
Lovett
,
J.
,
Brogan
,
T.
,
Philippona
,
D.
,
Kiel
,
B.
, and
Thompson
,
T.
,
2004
, “
Development Needs for Advanced Afterburner Designs
,”
AIAA
Paper No. 2004-4192.10.2514/6.2004-4192
4.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
1999
, “
Control of Thermoacoustic Instabilities in a Premixed Combustor by Fuel Modulation
,”
AIAA
Paper No. 1999-711.10.2514/6.1999-711
5.
Lieuwen
,
T.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, New York.
6.
Li
,
J.
,
Peluso
,
S.
,
Quay
,
B.
,
Santavicca
,
D.
,
Blust
,
J.
, and
Nivasan
,
S.
,
2017
, “
Effect of Pilot Flame on Flame Macrostructure and Combustion Instability
,”
ASME
Paper No. GT2017-64079.10.1115/GT2017-64079
7.
Li
,
J.
,
Kwon
,
H.
,
Seksinsky
,
D.
,
Doleiden
,
D.
,
O'Connor
,
J.
,
Xuan
,
Y.
,
Akiki
,
M.
, and
Blust
,
J.
,
2021
, “
Describing the Mechanism of Instability Suppression Using a Central Pilot Flame With Coupled Experiments and Simulations
,”
ASME
Paper No. GT2021-59117.10.1115/GT2021-59117
8.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
9.
Jordan
,
M. I.
, and
Mitchell
,
T. M.
,
2015
, “
Machine Learning: Trends, Perspectives, and Prospects
,”
Science
,
349
(
6245
), pp.
255
260
.10.1126/science.aaa8415
10.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. South. Afr. Inst. Min. Metall.
,
52
(
6
), pp.
119
139
.https://hdl.handle.net/10520/AJA0038223X_4792
11.
Yao
,
S.
,
Wang
,
B.
,
Kronenburg
,
A.
, and
Stein
,
O.
,
2021
, “
Conditional Scalar Dissipation Rate Modeling for Turbulent Spray Flames Using Artificial Neural Networks
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
3371
3378
.10.1016/j.proci.2020.06.135
12.
Pulga
,
L.
,
Bianchi
,
G.
,
Falfari
,
S.
, and
Forte
,
C.
,
2020
, “
A Machine Learning Methodology for Improving the Accuracy of Laminar Flame Simulations With Reduced Chemical Kinetics Mechanisms
,”
Combust. Flame
,
216
, pp.
72
81
.10.1016/j.combustflame.2020.02.021
13.
Ghani
,
A.
,
Boxx
,
I.
, and
Noren
,
C.
,
2020
, “
Data-Driven Identification of Nonlinear Flame Models
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p. 12101510.1115/1.4049071.
14.
Butz
,
D.
,
Hartl
,
S.
,
Popp
,
S.
,
Walther
,
S.
,
Barlow
,
R. S.
,
Hasse
,
C.
,
Dreizler
,
A.
, and
Geyer
,
D.
,
2019
, “
Local Flame Structure Analysis in Turbulent CH4/Air Flames With Multi-Regime Characteristics
,”
Combust. Flame
,
210
, pp.
426
438
.10.1016/j.combustflame.2019.08.032
15.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
16.
Zhou
,
L.
,
Song
,
Y.
,
Ji
,
W.
, and
Wei
,
H.
,
2022
, “
Machine Learning for Combustion
,”
Energy AI
,
7
(
100128
), p.
100128
.10.1016/j.egyai.2021.100128
17.
Paschereit
,
C. O.
,
Schuermans
,
B.
, and
Büche
,
D.
,
2003
, “
Combustion Process Optimization Using Evolutionary Algorithm
,”
ASME
Paper No. GT2003-38393.10.1115/GT2003-38393
18.
Reumschüssel
,
J. M.
,
von Saldern
,
J. G.
,
Li
,
Y.
,
Paschereit
,
C. O.
, and
Orchini
,
A.
,
2022
, “
Gradient-Free Optimization in Thermoacoustics: Application to a Low-Order Model
,”
ASME J. Eng. Gas Turbines Power
, 144(5), p.
051004
.10.1115/1.4052087
19.
Büche
,
D.
,
Stoll
,
P.
,
Dornberger
,
R.
, and
Koumoutsakos
,
P.
,
2002
, “
Multiobjective Evolutionary Algorithm for the Optimization of Noisy Combustion Processes
,”
IEEE Trans. Syst., Man Cybern. Part C Appl. Rev.
,
32
(
4
), pp.
460
473
.10.1109/TSMCB.2002.804372
20.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes in Machine Learning
,
The MIT Press
,
Cambridge, MA
.
21.
Reumschüssel
,
J. M.
,
Von Saldern
,
J. G. R.
,
Kaiser
,
T. L.
,
Reichel
,
T.
,
Beuth
,
J. P.
,
Ćosić
,
B.
,
Genin
,
F.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2021
, “
NOx Emission Modelling for Lean Premixed Industrial Combustors With a Diffusion Pilot Burner
,”
ASME
Paper No. GT2021-59071.10.1115/GT2021-59071
22.
Ćosić
,
B.
,
Reiß
,
F.
,
Blümer
,
M.
,
Frekers
,
C.
,
Genin
,
F.
,
Pähr
,
J.
, and
Waßmer
,
D.
,
2022
, “
Development and Integration of the Dual Fuel Combustion System for the MGT Gas Turbine Family
,”
ASME J. Eng. Gas Turbines Power
, 144(2), p. 021021.10.1115/1.4052504
23.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
24.
Bouhlel
,
M. A.
,
Hwang
,
J. T.
,
Bartoli
,
N.
,
Lafage
,
R.
,
Morlier
,
J.
, and
Martins
,
J. R. R. A.
,
2019
, “
A Python Surrogate Modeling Framework With Derivatives
,”
Adv. Eng. Software
,
135
, p.
102662
.10.1016/j.advengsoft.2019.03.005
25.
Settles
,
B.
,
2009
,
Active Learning Literature Survey. Computer Sciences Technical Report
,
University of Wisconsin
,
Madison, WI
, Report No. 1648.
26.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.10.1080/00401706.2000.10485979
27.
Endres
,
S. C.
,
Sandrock
,
C.
, and
Focke
,
W. W.
,
2018
, “
A Simplicial Homology Algorithm for Lipschitz Optimisation
,”
J. Global Optim.
,
72
(
2
), pp.
181
217
.10.1007/s10898-018-0645-y
28.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.10.1063/1.1699114
29.
Fric
,
T. F.
,
1993
, “
Effects of Fuel-Air Unmixedness on NOx Emissions
,”
J. Propul. Power
,
9
(
5
), pp.
708
713
.10.2514/3.23679
30.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel-Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
(
1–2
), pp.
274
288
.10.1016/j.combustflame.2007.04.007
31.
Margason
,
R. J.
,
1968
, “
The Path of a Jet Directed at Large Angles to a Subsonic Free Stream
,” NASA, Washington, DC, Report No. TN D-4919.
32.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.10.1017/S0022112097007891
33.
Broadwell
,
J. E.
, and
Breidenthal
,
R. E.
,
1984
, “
Structure and Mixing of a Transverse Jet in Incompressible Flow
,”
J. Fluid Mech.
,
148
, pp.
405
412
.10.1017/S0022112084002408
You do not currently have access to this content.