Abstract

This paper presents a multifidelity optimization strategy for efficient uncertainty quantification and robust optimization applicable to turbomachinery blade design. The proposed strategy leverages freeform parameterization technique for flexible geometric perturbation and multifidelity information to reduce the number of evaluations of the expensive information source needed for robust optimization. The multifidelity Monte Carlo method was used to construct and exploit a surrogate-based multifidelity model based on the combination of high and low-fidelity CFD simulations and cheap regression models. Uncertainty quantification and robust optimization considering manufacturing tolerances were performed at a single operating point. An improvement in mean isentropic expansion efficiency of 2.98% was achieved for the robust design compared with the baseline although the mean mass flow rate and total pressure ratio differed by 1.72% and 0.67%, respectively. Compared to a single high-fidelity model, the multifidelity model was able to estimate the mean with a maximum deviation of 0.28% and 2.9% for the standard deviation. Furthermore, the multifidelity model realized a percentage reduction in computational cost of 66.18% for a combination of high fidelity CFD and regression models and 17.87% for high and low CFD models. One key observation was that, for small sampled high-fidelity CFD datasets that are highly correlated, it is possible to use only the high-fidelity model combined with regression models for constructing the multifidelity model without the need for low-fidelity CFD dataset. This significantly reduces the computational cost and time for acquiring and constructing a reliable stochastic model whiles maintaining reasonable accuracy.

References

1.
Sychenkov
,
V. A.
,
Limanskii
,
A. S.
,
Yousef
,
W. M.
,
Ankudimov
,
V. V.
, and
Jafari
,
S. S.
,
2019
, “
Micro Gas Turbine Engine for Unmanned Aerial Vehicles
,”
Russ. Aeronaut.
,
62
(
4
), pp.
651
660
.10.3103/S1068799819040160
2.
Large
,
J.
, and
Pesyridis
,
A.
,
2019
, “
Investigation of Microgas Turbine Systems for High Speed Long Loiter Tactical Unmanned Air Systems
,”
Aerospace
,
6
(
5
), p.
55
.10.3390/aerospace6050055
3.
Badum
,
L.
,
Leizeronok
,
B.
, and
Cukurel
,
B.
,
2021
, “
New Insights From Conceptual Design of an Additive Manufactured 300 W Microgas Turbine Toward Unmanned Aerial Vehicle Applications
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021006
.10.1115/1.4048695
4.
Marcellan
,
A.
,
Visser
,
W. P. J.
, and
Colonna
,
P.
,
2016
, “
Potential of Micro Turbine Based Propulsion Systems for Civil UAVS: A Case Study
,”
ASME
Paper No. GT2016-57719.10.1115/GT2016-57719
5.
Montomoli
,
F.
,
Carnevale
,
M.
,
D'Ammaro
,
A.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2015
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer Briefs in Applied Sciences and Technology, Springer International Publishing
,
Switzerland
, pp.
33
57
.
6.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
Van Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.10.1016/j.paerosci.2011.05.001
7.
Gouttière
,
A.
,
Wunsch
,
D.
,
Nigro
,
R.
,
Barbieux
,
V.
, and
Hirsch
,
C.
,
2021
, “
Robust Design Optimization of an Industrial 1.5 Stage Axial Compressor Under Operational and Geometrical Uncertainties
,”
ASME
Paper No. GT2021-58603.10.1115/GT2021-58603
8.
Panda
,
K.
,
King
,
R.
,
Glaws
,
A.
, and
Potter
,
K.
,
2021
, “
Multi-Fidelity Active Subspaces for Wind Farm Uncertainty Quantification
,”
AIAA
Paper No.
2021
1601
.10.2514/6.2021-1601
9.
Kamenik
,
J.
,
Voutchkov
,
I.
,
Toal
,
D. J.
,
Keane
,
A. J.
,
Högner
,
L.
,
Meyer
,
M.
, and
Bates
,
R.
,
2018
, “
Robust Turbine Blade Optimization in the Face of Real Geometric Variations
,”
J. Propul. Power
,
34
(
6
), pp.
1479
1493
.10.2514/1.B37091
10.
Ju
,
Y.
,
Liu
,
Y.
,
Jiang
,
W.
, and
Zhang
,
C.
,
2021
, “
Aerodynamic Analysis and Design Optimization of a Centrifugal Compressor Impeller Considering Realistic Manufacturing Uncertainties
,”
Aerosp. Sci. Technol.
,
115
, p.
106787
.10.1016/j.ast.2021.106787
11.
Wunsch
,
D.
, and
Hirsch
,
C.
,
2021
, “
Characterization of Manufacturing Uncertainties With Applications to Uncertainty Quantification and Robust Design Optimization
,”
J. Glob. Power Propuls. Soc.
, (
May
), pp.
1
16
.10.33737/jgpps/138902
12.
Nigro
,
R.
,
Wunsch
,
D.
,
Coussement
,
G.
, and
Hirsch
,
C.
,
2019
, “
Robust Design in Turbomachinery Applications
,”
Uncertainty Management for Robust Industrial Design in Aeronautics
,
Springer
,
Cham
, pp.
495
511
.
13.
Keane
,
A. J.
,
2009
, “
Comparison of Several Optimization Strategies for Robust Turbine Blade Design
,”
J. Propul. Power
,
25
(
5
), pp.
1092
1099
.10.2514/1.38673
14.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.10.1137/16M1082469
15.
Chakraborty
,
S.
,
Chatterjee
,
T.
,
Chowdhury
,
R.
, and
Adhikari
,
S.
,
2017
, “
A Surrogate-Based Multi-Fidelity Approach for Robust Design Optimization
,”
Appl. Math. Model
,
47
, pp.
726
744
.10.1016/j.apm.2017.03.040
16.
Fernández-Godino
,
M. G.
,
Park
,
C.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2016
, “
Review of Multi-Fidelity Models
,” arXiv preprint
arXiv: 1609.07196
.https://arxiv.org/abs/1609.07196#:~:text=Simulations%20are%20often%20computationally%20expensive,surrogate%20models%20an%20attractive%20option
17.
Toal
,
D. J.
,
2015
, “
Some Considerations Regarding the Use of Multi-Fidelity Kriging in the Construction of Surrogate Models
,”
Struct. Multidiscip. Optim.
,
51
(
6
), pp.
1223
1245
.10.1007/s00158-014-1209-5
18.
Gano
,
S. E.
,
Renaud
,
J. E.
, and
Sanders
,
B.
,
2005
, “
Hybrid Variable Fidelity Optimization by Using a Kriging-Based Scaling Function
,”
AIAA J.
,
43
(
11
), pp.
2422
2433
.10.2514/1.12466
19.
Alexandrov
,
N. M.
,
Lewis
,
R. M.
,
Gumbert
,
C. R.
,
Green
,
L. L.
, and
Newman
,
P. A.
,
2001
, “
Approximation and Model Management in Aerodynamic Optimization With Variable-Fidelity Models
,”
J. Aircr.
,
38
(
6
), pp.
1093
1101
.10.2514/2.2877
20.
Razaaly
,
N.
,
Persico
,
G.
, and
Congedo
,
P. M.
,
2020
, “
Multi-Fidelity Surrogate-Based Optimization of Transonic and Supersonic Axial Turbine Profiles
,”
ASME
Paper No. GT2020-14972.10.1115/GT2020-14972
21.
Mohammadi-Ahmar
,
A.
,
Mohammadi
,
A.
, and
Raisee
,
M.
,
2020
, “
Efficient Uncertainty Quantification of Turbine Blade Leading Edge Film Cooling Using Bi-Fidelity Combination of Compressed Sensing and Kriging
,”
Int. J. Heat Mass Transfer
,
162
, p.
120360
.10.1016/j.ijheatmasstransfer.2020.120360
22.
Benamara
,
T.
,
Breitkopf
,
P.
,
Lepot
,
I.
,
Sainvitu
,
C.
, and
Villon
,
P.
,
2017
, “
Multi-Fidelity POD Surrogate-Assisted Optimization: Concept and Aero-Design Study
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1387
1412
.10.1007/s00158-017-1730-4
23.
Lanza
,
A.
,
Morigi
,
S.
,
Reichel
,
L.
, and
Sgallari
,
F.
,
2015
, “
A Generalized Krylov Subspace Method for pqminimization
,”
SIAM J. Sci. Comput.
,
37
(
5
), pp.
S30
S50
.10.1137/140967982
24.
ANSYS
,
2009
,
ANSYS CFX, Release 13.0 User's Guide
,
ANSYS, Inc
,
Canonsburg, PA
.
25.
ANSYS
,
2009
,
ANSYS TurboGrid, Release 13.0 User's Guide
,
ANSYS, Inc
,
Canonsburg, PA
.
26.
Lin
,
G.
,
Kusterer
,
K.
,
Ayed
,
A. H.
,
Bohn
,
D.
, and
Sugimoto
,
T.
,
2014
, “
Conjugate Heat Transfer Analysis of Convection-Cooled Turbine Vanes Using γ-Reθ Transition Model
,”
Int. J. Gas Turbine Propuls. Power Syst
,.,
6
(
3
), pp.
9
15
.10.38036/jgpp.6.3_9
27.
Zhang
,
H.
,
Zou
,
Z.
,
Li
,
Y.
,
Ye
,
J.
, and
Song
,
S.
,
2013
, “
Conjugate Heat Transfer Investigations of Turbine Vane Based on Transition Models
,”
Chin. J. Aeronaut.
,
26
(
4
), pp.
890
897
.10.1016/j.cja.2013.04.024
28.
FRIENDSHIP SYSTEMS AG
, “
Product Overview
”, accessed Aug. 25, 2022, https://www.caeses.com/products/caeses
29.
Adjei
,
R. A.
,
Fan
,
C.
,
Wang
,
W.
, and
Liu
,
Y.
,
2021
, “
Multidisciplinary Design Optimization for Performance Improvement of an Axial Flow Fan Using Free-Form Deformation
,”
ASME. J. Turbomach.
,
143
(
1
), p.
011003
.10.1115/1.4048793
30.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2016
, “
Optimal Model Management for Multifidelity Monte Carlo Estimation
,”
SIAM J. Sci. Comput.
,
38
(
5
), pp.
A3163
A3194
.10.1137/15M1046472
31.
Ng
,
L.
, and
Willcox
,
K.
,
2014
, “
Multifidelity Approaches for Optimization Under Uncertainty
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
746
772
.10.1002/nme.4761
32.
Peherstorfer
,
B.
,
2019
, “
Multifidelity Monte Carlo Estimation With Adaptive Low-Fidelity Models
,”
SIAM-ASA J. Uncertain.
,
7
(
2
), pp.
579
603
.10.1137/17M1159208
33.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “
UQLab: A Framework for Uncertainty Quantification in MATLAB
,” The 2nd International Conference on Vulnerability and Risk Analysis and Management (
ICVRAM 2014
), University of Liverpool, Liverpool, UK, July 13–16, pp.
2554
2563
.10.1061/9780784413609.257
34.
Addinsoft
,
2019
, “
XLSTAT Statistical and Data Analysis Solution,” Addinsoft, Long Island, NY,
accessed Feb. 1, 2022, https://www.xlstat.com
35.
Schnoes
,
M.
,
Schmitz
,
A.
, and
Goinis
,
G.
,
2019
, “
Strategies for Multi-Fidelity Optimization of Multistage Compressors With Through Flow and 3D CFD
,” Proceedings of the International Society for Air Breathing Engines, Canberra, Australia, Sept. 22–27, Paper No.
ISABE-2019-24033
.https://www.researchgate.net/publication/337338572_Strategies_for_Multi-Fidelity_Optimization_of_Multi-Stage_Compressors_with_Throughflow_and_3D_CFD
36.
Brooks
,
C.
,
Forrester
,
A.
,
Keane
,
A.
, and
Shahpar
,
S.
,
2011
, “
Multi-Fidelity Design Optimization of a Transonic Compressor Rotor
,”
9th European Turbomachinery Conference
, Istanbul, Turkey, Mar. 21–25, p.
10
.https://www.researchgate.net/publication/267568912_Multifidelity_Design_Optimisation_of_a_Transonic_Compressor_Rotor
37.
Mondal
,
S.
,
Joly
,
M. M.
, and
Sarkar
,
S.
,
2019
, “
Multi-Fidelity Global-Local Optimization of a Transonic Compressor Rotor
,”
ASME
Paper No. GT2019-91778.10.1115/GT2019-91778
38.
Giselle Fernández-Godino
,
M.
,
Park
,
C.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2019
, “
Issues in Deciding Whether to Use Multifidelity Surrogates
,”
AIAA J.
,
57
(
5
), pp.
2039
2054
.10.2514/1.J057750
39.
ISO 2768-1
,
1989
, “
General Tolerances - Part 1: Tolerances for Linear and Angular Dimensions Without Individual Tolerance Indications,
” International Organization for Standardization, Geneva, Switzerland.https://www.alteams.com/content/uploads/2018/11/General-tolerances-part-1-Tolerancesfor-linear-and-angular-dimensions-without-individual-tolerance.pdf
40.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within the Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.10.1115/1.3446247
41.
Zhang
,
W.
,
Zou
,
Z.
, and
Ye
,
J.
,
2012
, “
Leading-Edge Redesign of a Turbomachinery Blade and Its Effect on Aerodynamic Performance
,”
Appl. Energy
,
93
, pp.
655
667
.10.1016/j.apenergy.2011.12.091
42.
Schobeiri
,
M. T.
,
2018
, “
Impact of Turbine Blade Stagger Angle Adjustment on the Efficiency and Performance of Gas Turbines During Off-Design and Dynamic Operation
,”
ASME
Paper No. GT2018-75968.10.1115/GT2018-75968
You do not currently have access to this content.