Abstract

For simulations of liquid jets in crossflows, the primary atomization can be treated with the quadratic formula, which has been derived from integral form of conservation equations of mass and energy in our previous work. This formula relates the drop size with the local kinetic energy state, so that local velocity data from the volume-of-fluid (VOF) simulation prior to the atomization can be used to determine the initial drop size. This initial drop size, along with appropriately sampled local gas velocities, is used as the initial conditions in the dispersed-phase simulation. This procedure has been performed on a coarse-grid platform, with good validation and comparison with available experimental data at realistic Reynolds and Weber numbers, representative of gas-turbine combustor flows. The computational procedure produces all the relevant spray characteristics: spatial distributions of drop size, velocities, and volume fluxes, along with global drop size distributions. The primary atomization module is based on the conservation principles and is generalizable and implementable to any combustor geometries for accurate and efficient computations of spray flows.

References

1.
Lee
,
K.
,
Aalburg
,
C.
,
Diez
,
F. J.
,
Faeth
,
G. M.
, and
Sallam
,
K. A.
,
2007
, “
Primary Breakup of Turbulent Round Liquid Jets in Uniform Crossflows
,”
AIAA J.
,
45
(
8
), pp.
1907
1916
.10.2514/1.19397
2.
Wu
,
P. K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
,
1998
, “
Spray Structures of Liquid Jets Atomized in Subsonic Crossflows
,”
J. Propul. Power
,
14
(
2
), pp.
173
182
.10.2514/2.5283
3.
Eslamian
,
M.
,
Amighi
,
A.
, and
Ashgriz
,
N.
,
2014
, “
Atomization of Liquid Jets in High-Pressure and High-Temperature Subsonic Crossflow
,”
AIAA J.
,
52
(
7
), pp.
1374
1385
.10.2514/1.J052548
4.
Almeida
,
H.
,
Sousa
,
J. M. M.
, and
Costa
,
M.
,
2014
, “
Effect of the Liquid Injection Angle on the Atomization of Liquid Jets in Subsonic Crossflows
,”
Atomization Sprays
,
24
(
1
), pp.
81
96
.10.1615/AtomizSpr.2013008310
5.
Song
,
J.
,
Cain
,
C. C.
, and
Lee
,
J. G.
,
2014
, “
Liquid Jets in Subsonic Air Crossflow at Elevated Pressure
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041502
.10.1115/1.4028565
6.
Less
,
D. M.
, and
Schetz
,
J. A.
,
1986
, “
Transient Behavior of Liquid Jets Injected Normal to a High-Velocity Gas Stream
,”
AIAA J.
,
24
(
12
), p.
19791979
.10.2514/3.9556
7.
Herrmann
,
M.
,
2010
, “
Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061506
.10.1115/1.4000148
8.
Rachner
,
M.
,
Becker
,
J.
,
Hassa
,
C.
, and
Doerr
,
T.
,
2002
, “
Modelling of the Atomization of a Plain Liquid Fuel Jet in Crossflow at Gas Turbine Conditions
,”
Aerosp. Sci. Technol.
,
6
(
7
), pp.
495
506
.10.1016/S1270-9638(01)01135-X
9.
Becker
,
J.
, and
Hassa
,
C.
,
2002
, “
Breakup and Atomization of a Kerosene Jet in Crossflow at Elevated Pressure
,”
Atomization Sprays
,
12
(
1–3
), pp.
49
67
.10.1615/AtomizSpr.v12.i123.30
10.
Khosla
,
S.
, and
Crocker
,
D. S.
,
2004
, “
CFD Modeling of the Atomization of Plain Liquid Jets in Cross Flow for Gas Turbine Applications
,”
ASME
Paper No. GT2004-54269.10.1115/GT2004-54269
11.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
12.
Gorokhovski
,
M.
, and
Herrmann
,
M.
,
2008
, “
Modeling Primary Atomization
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
343
366
.10.1146/annurev.fluid.40.111406.102200
13.
Movaghar
,
A.
,
Linne
,
M.
,
Herrmann
,
M.
,
Kerstein
,
A. R.
, and
Oevermann
,
M.
,
2018
, “
Modeling and Numerical Study of Primary Breakup Under Diesel Conditions
,”
Int. J. Multiphase Flows
,
98
, pp.
110
119
.10.1016/j.ijmultiphaseflow.2017.09.002
14.
Saeedipour
,
M.
,
Pirker
,
S.
,
Bozorgi
,
S.
, and
Schneiderbauer
,
S.
,
2016
, “
An Eulerian-Lagrangian Hybrid Model for the Coarse-Grid Simulation of Turbulent Liquid Jet Breakup
,”
Int. J. Multiphase Flows
,
82
, pp.
17
26
.10.1016/j.ijmultiphaseflow.2016.02.011
15.
Umemura
,
A.
, and
Shinjo
,
J.
,
2018
, “
Detailed SGS Atomization Model and Its Implementation to Two-Phase LES
,”
Combust. Flame
,
195
, pp.
232
252
.10.1016/j.combustflame.2018.01.026
16.
Lee
,
T.-W.
, and
Robinson
,
D.
,
2010
, “
A Method for Direct Calculations of the Drop Size Distribution and Velocities From the Integral Form of the Conservation Equations
,”
Combust. Sci. Technol.
,
183
(
3
), pp.
271
284
.10.1080/00102202.2010.519362
17.
Lee
,
T.-W.
,
Lee
,
J. Y.
, and
Do
,
Y. H.
,
2012
, “
Momentum Effects on Drop Size, Calculated Using the Integral Form of the Conservation Equations
,”
Combust. Sci. Technol.
,
184
(
3
), pp.
434
443
.10.1080/00102202.2011.641628
18.
Lee
,
T.-W.
, and
An
,
K.
,
2016
, “
Quadratic Formula for Determining the Drop Size in Pressure-Atomized Sprays With and Without Swirl
,”
Phys. Fluids
,
28
(
6
), p.
063302
.10.1063/1.4951666
19.
Lee
,
T.-W.
,
Park
,
J. E.
, and
Kurose
,
R.
,
2018
, “
Determination of the Drop Size During Atomization of Liquid Jets in Cross Flows
,”
Atomization Sprays
,
28
(
3
), pp.
241
254
.10.1615/AtomizSpr.2018022768
20.
Lee
,
T.-W.
, and
Park
,
J. E.
,
2019
, “
Determination of the Drop Size During Air-Blast Atomization
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121301
.10.1115/1.4043592
21.
Lee
,
T.-W.
, and
Ryu
,
J. H.
,
2014
, “
Analyses of Spray Break-Up Mechanisms Using the Integral Form of the Conservation Equations
,”
Combust. Theory Model.
,
18
(
1
), pp.
89
100
.10.1080/13647830.2013.861515
22.
Lee
,
T.-W.
,
Greenlee
,
B.
, and
Park
,
J. E.
,
2019
, “
A Computational Protocol for Simulation of Sprays Including Primary Atomization: Pressure-Atomized Sprays With and Without Swirl
,” ILASS-Asia, Ube, Japan, Dec. 21–23, Paper No. 018.
23.
Lee
,
T.-W.
,
Park
,
J. E.
,
Bellerova
,
H.
,
Hnizdl
,
M.
, and
Raudensky
,
M.
,
2020
, “
Momentum Analyses for Determination of Drop Size and Distributions During Spray Atomization
,”
Atomization Sprays
,
30
(
2
), pp.
97
109
.10.1615/AtomizSpr.2020033955
24.
Pillai
,
A. L.
,
Nagao
,
J.
,
Awane
,
R.
, and
Kurose
,
R.
,
2020
, “
Influences of Liquid Fuel Atomization and Flow Rate Fluctuations on Spray Combustion Instabilities in a Backward-Facing Step Combustor
,”
Combust. Flame
,
220
, pp.
337
356
.10.1016/j.combustflame.2020.06.031
25.
Mashayek
,
A.
,
2006
, “
Experimental and Numerical Study of Liquid Jets in Cross Flow
,”
M.Sc. thesis
,
University of Toronto
,
Toronto, ON, Canada
.https://static1.squarespace.com/static/586d0c87d2b857738595696e/t/586d6d5be6f2e1b4e1988c64/1483566464657/ali_mash_MSc_thesis.pdf
26.
Mashayek
,
A.
, and
Ashgriz
,
N.
,
2010
, “
Atomization of a Liquid Jet in a Crossflow
,”
Handbook of Atomization and Sprays
,
N.
Ashgriz
, ed.,
Springer
,
Boston, MA
.
You do not currently have access to this content.