Abstract

Simple physical models are developed for the nominal contact stresses in dovetail attachments. These nominal stresses include the pressure, the shear traction, and the bending stress in the contact region, both during loading up and unloading. The models furnish closed-form expressions for these stresses. For a specific dovetail attachment, model values are compared with verified finite element values. As a result of the simplifications introduced to make the models tractable, model values only approximately equal finite element values. Nonetheless, the models capture the essential elements of the response of nominal stresses in dovetail attachments.

References

1.
Sinclair
,
G. B.
,
Cormier
,
N. G.
,
Griffin
,
J. H.
, and
Meda
,
G.
,
2002
, “
Contact Stresses in Dovetail Attachments: Finite Element Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
182
189
.10.1115/1.1391429
2.
Zhang
,
S.
,
Shen
,
X.
,
Dong
,
S.
,
Zhang
,
Y.
, and
Hu
,
W.
,
2019
, “
A Method to Analyze the Contact Stress of Dovetail Attachments in Aeroengine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
022505
.10.1115/1.4040684
3.
Wei
,
D.-S.
,
Ma
,
M.-D.
,
Zhang
,
H.
,
Hu
,
C.
, and
Wang
,
Y.-R.
,
2019
, “
Study of the Variation of Contact State Near the Contact Boundary in a Dovetail Attachment Under Different Loads
,”
Eng. Failure Anal.
,
105
(
11
), pp.
518
526
.10.1016/j.engfailanal.2019.07.025
4.
Shtaerman
,
I. Y.
,
1949
,
Contact Problems of the Theory of Elasticity
,
Gostekhizdat Publishing
,
Moscow, Russia
.
5.
Ciavarella
,
M.
,
Hills
,
D. A.
, and
Monno
,
G.
,
1998
, “
The Influence of Rounded Edges on Indentation by a Flat Punch
,”
Proc. Inst. Mech. Eng., Part C
,
212
(
4
), pp.
319
328
.10.1243/0954406981521259
6.
Andresen
,
H.
,
Hills
,
D. A.
, and
Vázquez
,
J.
,
2019
, “
Closed-Form Solutions for Tilted Three-Part Piecewise-Quadratic Half-Plane Contacts
,”
Int. J. Mech. Sci.
,
150
(
1
), pp.
127
134
.10.1016/j.ijmecsci.2018.09.024
7.
Sinclair
,
G. B.
, and
Cormier
,
N. G.
,
2002
, “
Contact Stresses in Dovetail Attachments: Physical Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
325
331
.10.1115/1.1415740
8.
Hamdy
,
M. M.
, and
Waterhouse
,
R. B.
,
1981
, “
The Fretting Wear of Ti-6A1-4V and Aged Inconel 718 at Elevated Temperatures
,”
Wear
,
71
(
2
), pp.
237
248
.10.1016/0043-1648(81)90342-2
9.
Lamé
,
M. G.
,
1852
,
Leçons Sur la Théorie Mathématique de L'Élasticité Des Corps Solides
,
Bachelier
,
Paris, France
.
10.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
,
New York
.
11.
Michell
,
J. H.
,
1899
, “
On the Direct Determination of Stress in an Elastic Solid, With Application to the Theory of Plates
,”
Proc. London Math. Soc.
,
s1-31
(
1
), pp.
100
124
.10.1112/plms/s1-31.1.100
12.
ASME
,
2012
, “
An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics
,” American Society of Mechanical Engineers, New York, Standard No.
ASME V&V 10.1
.https://www.asme.org/codes-standards/find-codes-standards/v-v-10-1-illustration-concepts-verification-validation-computational-solid-mechanics
13.
Sinclair
,
G. B.
,
Beisheim
,
J. R.
, and
Roache
,
P. J.
,
2016
, “
Effective Convergence Checks for Verifying Finite Element Stresses at Two-Dimensional Stress Concentrations
,”
ASME J. Verif. Validation Uncertainty Quantif.
,
1
(
4
), p.
041003
.10.1115/1.4034977
14.
Budynas
,
R. G.
,
1999
,
Advanced Strength and Applied Stress Analysis
, 2nd ed.,
WCB McGraw-Hill
,
New York
.
You do not currently have access to this content.