Abstract

Geared contra-rotating open rotors have the potential to further reduce fuel consumption relative to geared turbofans, but require a more-complex speed-reducing transmission system to drive the propellers. Hitherto, the preliminary design for such transmission systems has been reported independently of the overall engine modeling or has been limited by many predetermined engine constraints. This has restricted the feasible design space of the transmission systems. A simple transmissions preliminary design approach is needed that does not involve complicated mechanical assessments and can be integrated with engine preliminary design studies. This paper presents a novel design framework for sizing a double-helical differential planetary gearbox for a contra-rotating open rotor. An up-to-date methodology is proposed for the design of maximum load capacity gears for this application based on the power-transmitted, durability, and space envelope requirements. The methodology was validated with published data, demonstrating only very minor differences in geometry dimensions. Parametric analyses have been made to assess the impact of the design assumptions on gearbox dimensions. The framework also enables the identification of feasible torque ratios between the output shafts of the speed-reducer and the contra-rotating propellers driven by them. The impact of the torque ratio on the size of the gearbox has been analyzed for equal propeller rotational speeds and different speed ratios between the output shafts. This study shows that potential torque ratios lie between 1.1 and 1.33, with the higher ratios enabling more compact gearboxes having four or five planet gears.

References

1.
Korsia
,
J.
, and
Spiegeleer
,
G. D.
,
2006
, “
VITAL, an European R&D Program for Greener Aero-Engines
,”
25th ICAS Congress
, Hamburg, Germany, Sept. 3–8, pp.
1
5
.http://www.defense-aerospace.com/article-view/release/51710/snecma-to-research-greener-aero_engines-(jan.-19).html
2.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
,
2007
, “
New Environmental Friendly Aero Engine Core Concepts
,”
ISABE
, ISABE-2007-120, Beijing, China, Sept. 2–7, pp.
1
11
.https://www.semanticscholar.org/paper/New-Environmental-Friendly-Aero-Engine-Core-Baker-Rolt/86507ade9cd3ba17edab78ae6ec35655f99af2d
3.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Rodriguez Lucas
,
F.
,
2016
, “
Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor—Part I: Zero-Dimensional Performance Model for Counter-Rotating Propellers
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p. 072602.10.1115/1.4032008
4.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Rodriguez Lucas
,
F.
,
2016
, “
Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor—Part II: Impact on Fuel Consumption, Engine Weight, Certification Noise, and NOx Emissions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), pp.
1
8
.10.1115/1.4032009
5.
von der Bank
,
R.
,
Donnerhack
,
S.
,
Rae
,
A.
,
Cazalens
,
M.
,
Lundbladh
,
A.
, and
Dietz
,
M.
,
2014
, “
LEMCOTEC – Improving the Core-Engine Thermal Efficiency
,”
ASME
Paper No. GT2014-25040.10.1115/GT2014-25040
6.
Grönstedt
,
T.
,
2016
, “
Ultra Low Emission Technology Innovations for Mid-Century Aircraft Turbine Engines
,”
ASME
Paper No. GT2016-56123.10.1115/GT2016-56123
7.
Mastropierro
,
F. S.
,
Sebastiampillai
,
J.
,
Jacob
,
F.
, and
Rolt
,
A.
,
2020
, “
Modeling Geared Turbofan and Open Rotor Engine Performance for Year-2050 Long-Range and Short-Range Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), pp.
1
12
.10.1115/1.4045077
8.
Fite
,
E. B.
,
2013
, “
Ducted and Unducted Fans in Airbreathing Engines
,”
Encyclopedia Aerospace Engineering
, John Wiley & Sons, Ltd, Online.10.1002/9780470686652.eae090
9.
Sheridan
,
W.
,
McCune
,
M.
, and
Winter
,
M.
,
2010
, “
Geared TurbofanTM Engine: Driven by Innovation
,”
Encyclopedia of Aerospace Engineering
,
John Wiley & Sons, Ltd, Online
.10.1002/9780470686652.eae1018
10.
El-Sayed
,
A. F.
,
2016
,
Fundamentals of Aircraft and Rocket Propulsion
,
Springer
, London, UK.10.1007/978-1-4471-6796-91
11.
Schimming
,
P.
,
2003
, “
Counter Rotating Fans—An Aircraft Propulsion for the Future?
,”
J. Therm. Sci.
,
12
(
2
), pp.
97
103
.10.1007/s11630-003-0049-1
12.
Dron
,
S.
,
2008
, “
Toward ACARE 2020: Innovative Engine Architectures to Achieve the Environmental Goals?
,”
26th ICAS Congress
, ICAS 2008-4.2.2, Anchorage, Alaska, Sept.
14
19
.http://icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/595.PDF
13.
Lengyel
,
T.
,
Voß
,
C.
,
Schmidt
,
T.
, and
Nicke
,
E.
,
2009
, “
Design of a Counter Rotating Fan—An Aircraft Engine Technology to Reduce Noise and CO2-Emissions
,”
ISABE
, ISABE 2009-1267, Montreal, PQ, Canada, Sept. 7–11, pp.
1
10
.https://www.researchgate.net/publication/225005098_DESIGN_OF_A_COUNTER_ROTATING_FAN_-_AN_AIRCRAFT_ENGINE_TECHNOLOGY_TO_REDUCE_NOISE_AND_CO2-EMISSIONS
14.
Brailko
,
I. A.
,
Mileshin
,
V. I.
,
Volkov
,
A. M.
, and
Korznev
,
V. N.
,
2010
, “
Numerical and Experimental Investigations of CRF With Simulation of Flow Non-Uniformity in the Basic Flight Conditions
,”
27th ICAS Congress
, ICAS 2010-4.2.2, Nice, France, Sept.
19
24
.http://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/420.PDF
15.
Czech
,
M. J.
, and
Thomas
,
R. H.
,
2011
, “
Experimental Studies of Open Rotor Installation Effects
,”
AIAA
Paper No. AIAA-2011-4047.10.2514/6.2011-4047
16.
Delattre
,
G.
, and
Falissard
,
F.
,
2015
, “
Influence of Torque Ratio on Counter-Rotating Open-Rotor Interaction Noise
,”
AIAA J.
,
53
(
9
), pp.
2726
2738
.10.2514/1.J053797
17.
Haase
,
T.
,
Unruh
,
O.
,
Algermissen
,
S.
, and
Pohl
,
M.
,
2016
, “
Active Control of Counter-Rotating Open Rotor Interior Noise in a Dornier 728 Experimental Aircraft
,”
J. Sound Vib.
,
376
, pp.
18
32
.10.1016/j.jsv.2016.04.038
18.
Smith
,
D. A.
,
Filippone
,
A.
, and
Bojdo
,
N.
,
2019
, “
A Parametric Study of Open Rotor Noise
,”
AIAA
Paper No. AIAA-2019-2570.10.2514/6.2019-2570
19.
Smith
,
D. A.
,
Filippone
,
A.
, and
Bojdo
,
N.
,
2020
, “
Noise Reduction of a Counter Rotating Open Rotor Through a Locked Blade Row
,”
Aerosp. Sci. Technol.
,
98
, p.
105637
.10.1016/j.ast.2019.105637
20.
Grieb
,
H.
, and
Eckardt
,
D.
,
1986
, “
Turbofan and Propfan as Basis for Future Economic Propulsion Concepts
,”
AIAA
Paper No. AIAA-86-1474.10.2514/6.1986-1474
21.
Pundhir
,
D. S.
, and
Sharma
,
P. B.
,
1992
, “
A Study of Aerodynamic Performance of a Contra-Rotating Axial Compressor Stage
,”
Defense Sci. J.
,
42
(
3
), pp.
191
199
.10.14429/dsj.42.4381
22.
Sharma
,
P. B.
, and
Adekoya
,
A.
,
1996
, “
A Review of Recent Research on Contra-Rotating Axial Flow Compressor Stage
,”
ASME
Paper No. 96-GT-254.10.1115/96-GT-254
23.
Shi
,
W.
,
Li
,
J.
,
Yang
,
Z.
, and
Zhang
,
H.
,
2018
, “
CFD Analysis of Contrarotating Open Rotor Aerodynamic Interactions
,”
Int. J. Aerosp. Eng.
,
2018
, pp.
1
13
.10.1155/2018/9538787
24.
Anderson
,
R. D.
,
1985
, “
Advanced Propfan Engine Technology (APET) Definition Study, Single and Counter-Rotation Gearbox/Pitch Change Mechanism Design
,” NASA, Lewis Research Center, Cleveland, OH, Report No. CR-168115.
25.
Reynolds
,
C. N.
, “
Advanced Propfan Engine Technology (APET) Single and Counter-Rotation Gearbox/Pitch Change Mechanism Final Report
,” NASA, Lewis Research Center, Cleveland, OH, Report No. CR-168114.
26.
Anderson
,
N. E.
,
Cedoz
,
R. W.
,
Salama
,
E. E.
, and
Wagner
,
D. A.
,
1987
, “
Advanced Gearbox Technology—Final Report
,” NASA, Lewis Research Center, Cleveland, OH, Report No. CR-179625.
27.
Howe
,
D. C.
,
Sundt
,
C. V.
, and
McKibbon
,
A. H.
,
1987
, “
Advanced Gearbox Technology Advanced Counter-Rotating Gearbox Detailed Design Report
,” NASA, Lewis Research Center, Cleveland, OH, Report No. CR-180883.
28.
Matsuoka
,
T.
,
Nishikawa
,
H.
,
Imai
,
H.
,
Kijima
,
K.
,
Nishida
,
T.
, and
Goi
,
T.
,
2011
, “
Light Weight and Low-Misalignment Planetary Gear System for Open Rotor Power Gearbox
,”
ASME
Paper No. DETC2011-47342.10.1115/DETC2011-47342
29.
Imai
,
H.
,
Goi
,
T.
,
Kijima
,
K.
,
Nishida
,
T.
,
Arisawa
,
H.
,
Matsuoka
,
T.
, and
Sato
,
M.
,
2013
, “
Design and Test of Differential Planetary Gear System for Open Rotor Power Gearbox
,”
ASME
Paper No. DETC2013-12089.10.1115/DETC2013-12089
30.
Sato
,
K.
,
Goi
,
T.
,
Taguchi
,
T.
,
Nishida
,
T.
,
Arisawa
,
H.
,
Matsuoka
,
T.
,
Imai
,
H.
, and
Banno
,
T.
,
2015
, “
Design, Analysis, and Tests of Differential Planetary Gear System for Open Rotor Power Gearbox (Final Report)
,”
ASME
Paper No. DETC2015-46414. 10.1115/DETC2015-46414
31.
European Commission
,
2020
, “
Developing Advanced Engine Multi-Disciplinary Optimization Simulations (DEMOS)—Enhanced EU-Developed Design Tool Helps Improve Aircraft Propulsion Systems
,” CORDIS EU Research Results, No. 418113 (Online), accessed Dec. 10, 2020, https://cordis.europa.eu/article/id/418113
32.
Lynwander
,
P.
,
1983
,
Gear Drive Systems: Design and Application
,
CRC Press
, Boca Raton, FL.
33.
Anderson
,
N. E.
,
Nightingale
,
L.
, and
Wagner
,
D. A.
,
1989
, “
Design and Test of a Propfan Gear System
,”
J. Propul. Power
,
5
(
1
), pp.
95
102
.10.2514/3.23120
34.
Reynolds
,
C. N.
,
Riffel
,
R. E.
, and
Ludemann
,
S.
,
1987
, “
Propfan Propulsion Systems for the 1990's
,”
AIAA
Paper No. AIAA-87-1729.10.2514/6.1987-1729
35.
Radzevich
,
S. P.
,
2012
,
Dudley's Handbook of Practical Gear Design and Manufacture
, 2nd ed.,
CRC Press
, Boca Raton, FL.
36.
Dominy
,
J.
, and
Midgley
,
R.
,
1984
, “
A Transmission for the Contra-Rotating Prop-Fan Powerplant
,”
AIAA
Paper No. AIAA-84-1196.10.2514/6.1984-1196
37.
Dominy
,
J.
,
1987
, “
Transmission Efficiency in Advanced Aerospace Powerplant
,”
AIAA
Paper No. AIAA-87-2043.10.2514/6.1987-2043
38.
Van Zante
,
D. E.
,
2015
, “
Progress in Open Rotor Research: A U.S. Perspective
,”
ASME
Paper No. GT2015-42203.10.1115/GT2015-42203
39.
American Gear Manufacturers Association (AGMA), “
Gear Nomenclature, Definition of Terms with Symbols
,”
AGMA
, Alexandria, VA, Standard No. 1012-G05.
40.
Otten
,
T.
,
Becker
,
R.
,
Reitenbach
,
S.
,
Schaber
,
R.
, and
Engler
,
A.
,
2019
, “
Development and Application of a Predesign Tool for Aero Engine Power Gearboxes
,”
ISABE
, ISABE-2019-24136, Canberra, Australia, Sept. 22–27, pp.
1
4
.https://www.researchgate.net/publication/336770833_Development_and_application_of_a_predesign_tool_for_aero_engine_power_gearboxes
41.
Tucker
,
A.
,
1986
, “
A Logical Procedure to Determine Initial Gear Size
,”
Gear Technology: The Journal of Gear Manufacturing, No. November/December 1986
, Randall Publications, Elk Grove Village, IL, pp.
27
32
.
42.
Errichello
,
R.
,
1989
, “
Rational Procedure for Designing Minimum-Weight Gears
,”
International Power Transmission and Gearing Conference
, Vol.
1
, Chicago, IL, Apr. 25–28, pp.
111
114
.
43.
American Gear Manufacturers Association (AGMA)
,
2001
, “Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth,”
AGMA
, Alexandria, VA, Standard No. 2001-D04.
44.
Tucker
,
A. I.
,
1980
, “
The Gear Design Process
,”
ASME
Paper No. 80-C2/DET-13.
45.
American Gear Manufacturers Association (AGMA),
“Design Guidelines for Aerospace Gearing,” AGMA, Alexandria, VA, AGMA Information Sheet No. 911-A94.
46.
Howes
,
M.
,
1996
, “
The Effect of Metallurgy on the Performance of Carburized Gears
,”
Gear Technology: The Journal of Gear Manufacturing, No. March/April 1996
,
Randall Publications, Elk Grove Village, IL, pp. 20–24
.https://www.geartechnology.com/articles/0396/The_Effect_of_Metallurgy_on_the_Performance_of_Carburized_Gears/
47.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2011
,
Shigley's Mechanical Engineering Design
, 9th ed.,
McGraw-Hill
, New York.
48.
Imwalle
,
D. E.
,
1976
, “
High Performance Epicyclic Gears for Gas Turbines
,”
ASME
Paper No. 76-GT-88.10.1115/76-GT-88
49.
Mott
,
R. L.
,
Machine Elements in Mechanical Design
, 4th ed.,
Prentice Hall
, Upper Saddle River, NJ.
50.
American Gear Manufacturers Association (AGMA)
,
2014
, “Specification for High Speed Helical Gear Units,”
AGMA
, Alexandria, VA, Standard No. 6011-I03.
51.
American Gear Manufacturers Association (AGMA), 2020,
“Rational Procedure for the Preliminary Design of Minimum Volume Gears,”
AGMA
, Alexandria, VA, AGMA Information Sheet No. 901-A92.
52.
Pratt & Whitney
,
2018
, “
GTF Engine: PW1100G-JM, Airbus A320NEO Product Card
,” Pratt & Whitney, East Hartford, CT, Product Card.
53.
EASA
,
2019
, “
PW1100G-JM Series Engines
,” EASA, Cologne, Germany, Type Certificate Data Sheet (TCDS) No. EASA.IM.E.093.
54.
Willis
,
R. J.
,
1963
, “
New Equations and Charts Pick Off: Lightest-Weight Gears
,”
Product Engineering Magazine
, 21 January, pp.
64
75
.
55.
Balk
,
W.
,
2017
, “
Contra-Rotating Propeller System for an Aircraft Turbine Engine
,” U.S. Patent 2012/0288358A1.
You do not currently have access to this content.