Abstract

In this paper, a method for predicting remaining useful life (RUL) of turbine blade under water droplet erosion (WDE) based on image recognition and machine learning is presented. Using the experimental rig for testing the WDE characteristics of materials, the morphology pictures of specimen surface at different times in the process of WDE are collected. According to the data processing method of ASTM-G73 and the cumulative erosion-time curves, the WDE stages of materials is quantitatively divided and the WDE life coefficient (ζ) is defined. The life coefficient (ζ) could be used to calculate the RUL of turbine blades. One convolutional neural network model and three machine learning models are adopted to train and predict the image dataset. Then the training process and feature maps of the Resnet model are studied in detail. It is found that the highest prediction accuracy of the method proposed in this paper can be 0.949, which is considered acceptable to provide reference for turbine overhaul period and blade replacement time.

References

1.
Heyman
,
F. J.
,
1992
, “
Liquid Impingement Erosion
,”
Wear ASM Handbook
, Vol. 18,
ASM
,
Novelty, OH
, pp.
221
232
.
2.
Cummins
,
S. J.
,
Silvester
,
T. B.
, and
Cleary
,
P. W.
,
2012
, “
Three-Dimensional Wave Impact on a Rigid Structure Using Smoothed Particle Hydrodynamics
,”
Int. J. Numer. Methods Fluids
,
69
(
9
), pp.
1471
1496
.10.1002/fld.2539
3.
Weisensee
,
P. B.
,
Ma
,
J.
,
Shin
,
Y. H.
,
Tian
,
J.
,
Chang
,
Y.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2017
, “
Droplet Impact on Vibrating Superhydrophobic Surfaces
,”
Phys. Rev. Fluids
,
2
(
10
), p.
103601
.10.1103/PhysRevFluids.2.103601
4.
Mahdipoor
,
M. S.
,
Kirols
,
H. S.
,
Kevorkov
,
D.
,
Jedrzejowski
,
P.
, and
Medraj
,
M.
,
2015
, “
Influence of Impact Speed on Water Droplet Erosion of TiAl Compared With Ti6Al4V
,”
Sci. Rep.
,
5
(
14182
), pp.
1
17
.10.1038/srep14182
5.
Hattori
,
S.
,
Nakamura
,
R.
, and
Lin
,
G.
,
2011
, “
Effect of Droplet Diameter on Liquid Impingement Erosion
,”
Trans. Jpn. Soc. Mech. Eng. Ser. A
,
77
(
782
), pp.
1760
1769
.10.1299/kikaia.77.1760
6.
Ahmad
,
M.
,
Schatz
,
M.
, and
Casey
,
M. J. W.
,
2013
, “
Experimental Investigation of Droplet Size Influence on Low Pressure Steam Turbine Blade Erosion
,”
Wear
, 303(1–2), pp.
83
86
.10.1016/j.wear.2013.03.013
7.
Kamkar
,
N.
,
Bridier
,
F.
,
Bocher
,
P.
, and
Jedrzejowski
,
P.
,
2013
, “
Water Droplet Erosion Mechanisms in Rolled Ti–6Al–4V
,”
Wear
,
301
(
1–2
), pp.
442
448
.10.1016/j.wear.2013.01.005
8.
Tarasi
,
F.
,
Mahdipoor
,
M. S.
,
Dolatabadi
,
A.
,
Medraj
,
M.
, and
Moreau
,
C.
,
2016
, “
HVOF and HVAF Coatings of Agglomerated Tungsten Carbide-Cobalt Powders for Water Droplet Erosion Application
,”
J. Therm. Spray Technol.
,
25
(
8
), pp.
1711
1723
.10.1007/s11666-016-0465-x
9.
Mahdipoor
,
M.
,
Tarasi
,
F.
,
Moreau
,
C.
,
Dolatabadi
,
A.
, and
Medraj
,
M. J. W.
,
2015
, “
HVOF Sprayed Coatings of Nano-Agglomerated Tungsten-Carbide/Cobalt Powders for Water Droplet Erosion Application
,”
Wear
, 330–331, pp.
338
347
.10.1016/j.wear.2015.02.034
10.
Wang
,
H. S.
,
Yuan
,
X.
,
Zhong
,
J. J.
, and
Wang
,
Z. Q.
,
2004
, “
Influence of Positive Curving on Blade Surface Flow of Compressor Cascade
,”
J. Propul. Technol.
, 25, pp.
210
214
.https://www.researchgate.net/publication/292633389_Influence_of_positive_curving_on_blade_surface_flow_of_compressor_cascade
11.
Yao
,
H.
,
Zhou
,
X.
,
Han
,
W. L.
, and
Wang
,
Z. Q.
,
2016
, “
Numerical Study for Effects of Bowed Blade Design on Preventing Water Erosion in Rotor Blade of Steam Turbine
,”
J. Propul. Technol.
, 37, pp.
2065
2071
.10.13675/j.cnki.tjjs.2016.11.009
12.
Slot
,
H. M.
,
Gelinck
,
E. R. M.
,
Rentrop
,
C.
, and
Van
,
D. H. E.
,
2015
, “
Leading Edge Erosion of Coated Wind Turbine Blades: Review of Coating Life Models
,”
Renew. Energy
,
80
, pp.
837
848
.10.1016/j.renene.2015.02.036
13.
Zhou
,
Q.
,
Na
,
L.
,
Xi
,
C.
,
Xu
,
T.
,
Hui
,
S.
, and
Di
,
Z.
,
2009
, “
Analysis of Water Drop Erosion on Turbine Blades Based on a Nonlinear Liquid–Solid Impact Model
,”
Int. J. Impact Eng.
,
36
(
9
), pp.
1156
1171
.10.1016/j.ijimpeng.2009.02.007
14.
Springer
,
G.
,
1976
, “
Erosion by Liquid Impact
,” Scripta Technica Publishing Co., Washington, DC.
15.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Signal Process.
,
104
, pp.
799
834
.10.1016/j.ymssp.2017.11.016
16.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
,”
International Conference on Prognostics and Health Management
,
Denver, CO
,
Oct. 6–9
, pp.
1
9
.10.1109/PHM.2008.4711414
17.
Loutas
,
T. H.
,
Roulias
,
D.
, and
Georgoulas
,
G.
,
2013
, “
Remaining Useful Life Estimation in Rolling Bearings Utilizing Data-Driven Probabilistic E-Support Vectors Regression
,”
IEEE Trans. Reliab.
,
62
(
4
), pp.
821
832
.10.1109/TR.2013.2285318
18.
Nectoux
,
P.
,
Gouriveau
,
R.
,
Medjaher
,
K.
,
Ramasso
,
E.
,
Chebel-Morello
,
B.
,
Zerhouni
,
N.
, and
Varnier
,
C.
,
2012
, “
Pronostia: An Experimental Platform for Bearings Accelerated Degradation Tests
,”
IEEE International Conference on Prognostics and Health Management
,
Denver, CO
,
June 18–21
.https://hal.archives-ouvertes.fr/hal-00719503/document
19.
Qiu
,
H.
,
Lee
,
J.
,
Lin
,
J.
, and
Yu
,
G.
,
2006
, “
Wavelet Filter-Based Weak Signature Detection Method and Its Application on Rolling Element Bearing Prognostics
,”
J. Sound Vib.
,
289
(
4–5
), pp.
1066
1090
.10.1016/j.jsv.2005.03.007
20.
Zhang
,
D. D.
,
2011
, “
An Adaptive Procedure for Tool Life Prediction in Face Milling
,”
Proceedings of the Institution of Mechanical Engineers, Part J: J. Eng. Tribol.
, 225(11), pp.
1130
1136
.10.1177/1350650111414332
21.
Wei
,
M.
,
Chen
,
M.
, and
Zhou
,
D.
,
2013
, “
Multi-Sensor Information Based Remaining Useful Life Prediction With Anticipated Performance
,”
IEEE Trans. Reliab.
,
62
(
1
), pp.
183
198
.10.1109/TR.2013.2241232
22.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
, and
Zhou
,
D. H.
,
2011
, “
Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
.10.1016/j.ejor.2010.11.018
23.
Cubillo
,
A.
,
Perinpanayagam
,
S.
, and
Esperon-Miguez
,
M.
,
2016
, “
A Review of Physics-Based Models in Prognostics: Application to Gears and Bearings of Rotating Machinery
,”
Adv. Mech. Eng.
,
8
(
8
).10.1177/1687814016664660
24.
Wang
,
L.
,
Zhang
,
L.
, and
Wang
,
X. Z.
,
2015
, “
Reliability Estimation and Remaining Useful Lifetime Prediction for Bearing Based on Proportional Hazard Model
,”
J. Central South Univ.
,
22
(
12
), pp.
4625
4633
.10.1007/s11771-015-3013-9
25.
Zemouri
,
R.
, and
Gouriveau
,
R.
,
2010
, “
Towards Accurate and Reproducible Predictions for Prognostic: An Approach Combining a RRBF Network and an AutoRegressive Model
,”
IFAC Proceedings Volumes
, 43(3), pp.
140
145
.10.3182/20100701-2-PT-4012.00025
26.
ASME
2017
, “
Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus
,” ASTM International, West Conshohocken, PA, Standard No.
G73-10(2017)
.https://www.astm.org/Standards/G73
27.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.10.1109/CVPR.2016.90
28.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Identity Mappings in Deep Residual Networks
,”
ECCV
,
Amsterdam, The Netherlands
,
Oct. 8–16
, pp.
630
645
.10.1007/978-3-319-46493-0_38
29.
Tikhomirov
,
R. A.
,
Petukhov
,
E. N.
,
Babanin
,
V. F.
,
Starikov
,
I. D.
, and
Kovalev
,
V. A.
,
1992
,
High-Pressure Jet Cutting
,
ASME
,
New York
.
30.
Zhang
,
Z.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2019
, “
Experimental Study on Water Droplet Erosion Resistance of Coatings (Ni60 and WC-17Co) Sprayed by APS and HVOF
,”
Wear
, 432, p.
202950
.10.1016/j.wear.2019.202950
31.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Müller
,
A.
,
Nothman
,
J.
, and
Louppe
,
G.
,
2012
, “
Scikit-Learn: Machine Learning in Python
,”
J. Machine Learn. Res.
, 12, pp.
2825
2830
.https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
32.
Ahmad
,
M.
,
Casey
,
M.
, and
Sürken
,
N.
,
2009
, “
Experimental Assessment of Droplet Impact Erosion Resistance of Steam Turbine Blade Materials
,”
Wear
,
267
(
9–10
), pp.
1605
1618
.10.1016/j.wear.2009.06.012
33.
Min
,
A. T. W.
,
Sagarna
,
R.
,
Gupta
,
A.
,
Ong
,
Y. S.
, and
Chi
,
K. G.
,
2017
, “
Knowledge Transfer Through Machine Learning in Aircraft Design
,”
IEEE Comput. Intell. Mag.
,
12
(
4
), pp.
48
60
.10.1109/MCI.2017.2742781
34.
Azab
,
A.
,
Arvaneh
,
M.
,
Toth
,
J.
, and
Mihaylova
,
L.
,
2018
, “
A Review on Transfer Learning Approaches Brain–Computer Interface
,”
Signal Processing and Machine Learning for Brain-Machine Interfaces
,
The Institution of Engineering and Technology
,
London, UK
.https://www.researchgate.net/publication/328290635_A_review_on_transfer_learning_approaches_in_brain-computer_interface
You do not currently have access to this content.