Abstract

Burning carbon-free fuels such as hydrogen in gas turbines promises power generation with strongly reduced greenhouse gas emissions. A two-stage combustor architecture with a propagation-stabilized flame in the first stage and an auto-ignition-stabilized flame in the second stage allows for efficient combustion of hydrogen fuels. However, interactions between the auto-ignition-stabilized flame and the acoustic field of the combustor may result in self-sustained oscillations of the flame front position and heat release rate, which severely affect the stable operation of the combustor. We study one such “intrinsic” mode of interaction, wherein acoustic waves generated by the unsteady flame front travel upstream and modulate the incoming mixture resulting in flame front oscillations. In particular, we study the response of an auto-ignition-stabilized flame to upstream traveling acoustic disturbances in a simplified one-dimensional (1D) configuration. We first present a numerical framework to calculate the response of auto-ignition-stabilized flames to acoustic and entropy disturbances in a 1D combustor. The flame response is computed by solving the energy and species mass balance equations, coupled with detailed chemistry. We validate the framework with compressible direct numerical simulations (DNSs). Finally, we present results for the flame response to upstream traveling acoustic perturbations. The results show that auto-ignition-stabilized flames are highly sensitive to acoustic temperature fluctuations and exhibit a characteristic frequency-dependent response. Acoustic pressure and velocity fluctuations can either constructively or destructively superpose with temperature fluctuations, depending on the mean pressure and relative phase between the fluctuations. The findings of this work are essential for understanding and modeling the intrinsic feedback mechanism in combustors with auto-ignition-stabilized flames.

References

1.
Ciani
,
A.
,
Bothien
,
M.
,
Bunkute
,
B.
,
Wood
,
J.
, and
FrüChtel
,
G.
,
2019
, “
Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines
,”
J. Global Power Propul. Soc.
,
3
, pp.
630
638
.10.33737/jgpps/110717
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (
Progress in Astronautics and Aeronautics
, Vol.
210
),
American Institute of Aeronautics and Astronautics
, Reston, VA.10.2514/4.866807
3.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1809
1816
.10.1016/S0082-0784(98)80022-2
4.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
1999
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME
Paper No. 99-GT-003.10.1115/99-GT-003
5.
McManus
,
K.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.10.1016/0360-1285(93)90020-F
6.
Sattelmayer
,
T.
,
2000
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME
Paper No. 2000-GT-0082.10.1115/2000-GT-0082
7.
Oberleithner
,
K.
,
Schimek
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Shear Flow Instabilities in Swirl-Stabilized Combustors and Their Impact on the Amplitude Dependent Flame Response: A Linear Stability Analysis
,”
Combust. Flame
,
162
(
1
), pp.
86
99
.10.1016/j.combustflame.2014.07.012
8.
Yang
,
Y.
,
Noiray
,
N.
,
Scarpato
,
A.
,
Schulz
,
O.
,
Düsing
,
K. M.
, and
Bothien
,
M.
,
2015
, “
Numerical Analysis of the Dynamic Flame Response in Alstom Reheat Combustion Systems
,”
ASME
Paper No. GT2015-42622.10.1115/GT2015-42622
9.
Bothien
,
M.
,
Lauper
,
D.
,
Yang
,
Y.
, and
Scarpato
,
A.
,
2019
, “
Reconstruction and Analysis of the Acoustic Transfer Matrix of a Reheat Flame From Large-Eddy Simulations
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021018
.10.1115/1.4041151
10.
Schulz
,
O.
, and
Noiray
,
N.
,
2018
, “
Autoignition Flame Dynamics in Sequential Combustors
,”
Combust. Flame
,
192
, pp.
86
100
.10.1016/j.combustflame.2018.01.046
11.
Schulz
,
O.
,
Doll
,
U.
,
Ebi
,
D.
,
Droujko
,
J.
,
Bourquard
,
C.
, and
Noiray
,
N.
,
2019
, “
Thermoacoustic Instability in a Sequential Combustor: Large Eddy Simulation and Experiments
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5325
5332
.10.1016/j.proci.2018.07.089
12.
Zellhuber
,
M.
,
Schuermans
,
B.
, and
Polifke
,
W.
,
2014
, “
Impact of Acoustic Pressure on Autoignition and Heat Release
,”
Combust. Theory Modell.
,
18
(
1
), pp.
1
31
.10.1080/13647830.2013.817609
13.
Gant
,
F.
,
Bunkute
,
B.
, and
Bothien
,
M. R.
,
2021
, “
Reheat Flames Response to Entropy Waves
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6271
6278
.10.1016/j.proci.2020.05.007
14.
Gant
,
F.
,
Gruber
,
A.
, and
Bothien
,
M. R.
,
2020
, “
Development and Validation Study of a 1D Analytical Model for the Response of Reheat Flames to Entropy Waves
,”
Combust. Flame
,
222
, pp.
305
316
.10.1016/j.combustflame.2020.09.005
15.
Gant
,
F.
,
Scarpato
,
A.
, and
Bothien
,
M. R.
,
2019
, “
Occurrence of Multiple Flame Fronts in Reheat Combustors
,”
Combust. Flame
,
205
, pp.
220
230
.10.1016/j.combustflame.2019.04.013
16.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
RT Edwards
, Philadelphia, PA.
17.
Chen
,
J. H.
,
Choudhary
,
A.
,
de Supinski
,
B.
,
DeVries
,
M.
,
Hawkes
,
E. R.
,
Klasky
,
S.
,
Liao
,
W. K.
,
Ma
,
K. L.
,
Mellor-Crummey
,
J.
,
Podhorszki
,
N.
,
Sankaran
,
R.
,
Shende
,
S.
, and
Yoo
,
C. S.
,
2009
, “
Terascale Direct Numerical Simulations of Turbulent Combustion Using S3D
,”
Comput. Sci. Discovery
,
2
(
1
), p.
015001
.10.1088/1749-4699/2/1/015001
18.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.10.1002/kin.20026
19.
Poinsot
,
T. J.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
20.
Sutherland
,
J. C.
, and
Kennedy
,
C. A.
,
2003
, “
Improved Boundary Conditions for Viscous, Reacting, Compressible Flows
,”
J. Comput. Phys.
,
191
(
2
), pp.
502
524
.10.1016/S0021-9991(03)00328-0
21.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
CANTERA: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.4.0
,” California Institute of Technology, Pasadena, CA, accessed Feb. 1, 2020, https://www.cantera.org
22.
Tam
,
C. K.
,
2012
,
Computational Aeroacoustics: A Wave Number Approach
, Vol.
33
,
Cambridge University Press
, New York.
23.
Morgans
,
A. S.
,
Goh
,
C. S.
, and
Dahan
,
J. A.
,
2013
, “
The Dissipation and Shear Dispersion of Entropy Waves in Combustor Thermoacoustics
,”
J. Fluid Mech.
,
733
(
2
), pp.
1
11
.10.1017/jfm.2013.448
24.
Zellhuber
,
M.
,
Bellucci
,
V.
,
Schuermans
,
B.
, and
Polifke
,
W.
,
2011
, “
Modelling the Impact of Acoustic Pressure Waves on Auto-Ignition Flame Dynamics
,”
Proceedings of the European Combustion Meeting
(
ECM
), Cardiff, UK, June 28–July 1, pp.
1
6
.https://www.researchgate.net/publication/255738733_Modelling_the_Impact_of_Acoustic_Pressure_Waves_on_Auto-Ignition_Flame_Dynamics
25.
Aditya
,
K.
,
Gruber
,
A.
,
Xu
,
C.
,
Lu
,
T.
,
Krisman
,
A.
,
Bothien
,
M. R.
, and
Chen
,
J. H.
,
2019
, “
Direct Numerical Simulation of Flame Stabilization Assisted by Autoignition in a Reheat Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2635
2642
.10.1016/j.proci.2018.06.084
26.
Själander
,
M.
,
Jahre
,
M.
,
Tufte
,
G.
, and
Reissmann
,
N.
,
2019
, “
EPIC: An Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure
,” arXiv preprint
arXiv:1912.05848
.
You do not currently have access to this content.