Abstract

Flutter stability is a dominant design constraint of modern turbines. Thus, flutter-tolerant designs are currently explored, where the resulting vibrations remain within acceptable bounds. In particular, friction damping has the potential to yield limit cycle oscillations (LCOs) in the presence of a flutter instability. To predict such LCOs, it is the current practice to model the aerodynamic forces in terms of aerodynamic influence coefficients for a linearized structural model with fixed oscillation frequency. This approach neglects that both the nonlinear contact interactions and the aerodynamic stiffness cause a change in the deflection shape and the frequency of the LCO. This, in turn, may have a substantial effect on the aerodynamic damping. The goal of this paper is to assess the importance of these neglected interactions. To this end, a state-of-the-art aero-elastic model of a low pressure turbine blade row is considered, undergoing nonlinear frictional contact interactions in the tip shroud interfaces. The LCOs are computed with a fully coupled harmonic balance method, which iteratively computes the Fourier coefficients of structural deformation and conservative flow variables, as well as the a priori unknown frequency. The coupled algorithm was found to provide excellent computational robustness and efficiency. Moreover, a refinement of the conventional energy method is developed and assessed, which accounts for both the nonlinear contact boundary conditions and the linearized aerodynamic influence. It is found that the conventional energy method may not predict a limit cycle oscillation at all while the novel approach presented here can.

References

1.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.10.1115/1.2817053
2.
Marshall
,
J. G.
, and
Imregun
,
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluids Struct.
,
10
(
3
), pp.
237
267
.10.1006/jfls.1996.0015
3.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2016
, “
Shock Structure, Mode Shape, and Geometric Considerations for Low-Pressure Turbine Flutter Suppression
,”
ASME
Paper No. GT2016-56706.10.1115/GT2016-56706
4.
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2017
, “
On the Interaction of Multiple Traveling Wave Modes in the Flutter Vibrations of Friction-Damped Tuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
042501
.10.1115/1.4034650
5.
Gross
,
J.
, and
Krack
,
M.
,
2019
, “
Multi-Wave Vibration Caused by Flutter Instability and Nonlinear Tip Shroud Friction
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021013
.10.1115/1.4044884
6.
Sinha
,
A.
, and
Griffin
,
J. H.
,
1983
, “
Friction Damping of Flutter in Gas Turbine Engine Airfoils
,”
AIAA J. Aircr.
,
20
(
4
), pp.
372
376
.10.2514/3.44878
7.
Sinha
,
A.
, and
Griffin
,
J. H.
,
1985
, “
Stability of Limit Cycles in Frictionally Damped and Aerodynamically Unstable Rotor Stages
,”
J. Sound Vib.
,
103
(
3
), pp.
341
356
.10.1016/0022-460X(85)90427-4
8.
Petrov
,
E. P.
,
2012
, “
Analysis of Flutter-Induced Limit Cycle Oscillations in Gas-Turbine Structures With Friction, Gap, and Other Nonlinear Contact Interfaces
,”
ASME J. Turbomach.
,
134
(
6
), p.
061018
.10.1115/1.4006292
9.
Martel
,
C.
,
Corral
,
R.
, and
Ivaturi
,
R.
,
2015
, “
Flutter Amplitude Saturation by Nonlinear Friction Forces: Reduced Model Verification
,”
ASME J. Turbomach.
,
137
(
4
), p.
041004
.10.1115/1.4028443
10.
Lassalle
,
M.
, and
Firrone
,
C. M.
,
2018
, “
A Parametric Study of Limit Cycle Oscillation of a Bladed Disk Caused by Flutter and Friction at the Blade Root Joints
,”
J. Fluids Struct.
,
76
(
Suppl C
), pp.
349
366
.10.1016/j.jfluidstructs.2017.10.004
11.
Ottl
,
D.
,
2007
, “
Modelle Und Mathematische Beschreibung, Versuchstechniken Zur Messung Von Dämpfungskenngrößen
,”
VDI-Richtlinie 3830: Werkstoff- Und Bauteildämpfung
, VDI, Düsseldorf, Germany, pp.
1
16
.
12.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
13.
Nowinski
,
M.
, and
Panovsky
,
J.
,
2000
, “
Flutter Mechanisms in Low Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
82
88
.10.1115/1.483179
14.
Corral
,
R.
, and
Gallardo
,
J. M.
,
2008
, “
Verification of the Vibration Amplitude Prediction of Self-Excited Lpt Rotor Blades Using a Fully Coupled Time-Domain Non-Linear Method and Experimental Data
,”
ASME
Paper No. GT2008-51416.10.1115/GT2008-51416
15.
Müller
,
T. R.
,
Vogt
,
D. M.
,
Vogel
,
K.
, and
Phillipsen
,
B. A.
,
2018
, “
Influence of Intrarow Interaction on the Aerodynamic Damping of an Axial Turbine Stage
,”
ASME
Paper No. GT2018-76777.
10.1115/GT2018-76777
16.
Sinha
,
A.
, and
Griffin
,
J. H.
,
1985
, “
Effects of Friction Dampers on Aerodynamically Unstable Rotor Stages
,”
AIAA J.
,
23
(
2
), pp.
262
270
.10.2514/3.8904
17.
Hartung
,
A.
,
Gross
,
J.
,
Heinze
,
T.
,
Panning-von Scheidt
,
L.
,
Krack
,
M.
, and
Hackenberg
,
H.-P.
,
2018
, “
Rig and Engine Validation of the Non-Linear Forced Response Analysis Performed by the Tool Oragl
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021019
.10.1115/1.4041160
18.
Leyes
,
R. A.
, and
Fleming
,
W. A.
,
1999
, The History of North American Small Gas Turbine Aircraft Engines, AIAA, Reston, VA.
19.
Wu
,
X.
,
Vahdati
,
M.
,
Schipani
,
C.
, and
Imregun
,
M.
,
2007
, “
Analysis of Low-Pressure Turbine Flutter for Different Shroud Interfaces
,”
ASME
Paper No. GT2007-27377.10.1115/GT2007-27377
20.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2015
, “
Physical Understanding and Sensitivities of Low Pressure Turbine Flutter
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), pp.
012502
012502
.10.1115/1.4028207
21.
Fuhrer
,
C.
, and
Vogt
,
D. M.
,
2017
, “
On the Impact of Simulation Approaches on the Predicted Aerodynamic Damping of a Low Pressure Steam Turbine Rotor
,”
ASME
Paper No. GT2017-63401.10.1115/GT2017-63401
22.
Martel
,
C.
,
Corral
,
R.
, and
Llorens
,
J. M.
,
2008
, “
Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning
,”
ASME J. Turbomach.
,
130
(
1
), p. 011006.10.1115/1.2720503
23.
D'Souza
,
K.
,
Jung
,
C.
, and
Epureanu
,
B. I.
,
2013
, “
Analyzing Mistuned Multi-Stage Turbomachinery Rotors With Aerodynamic Effects
,”
J. Fluids Struct.
,
42
(
0
), pp.
388
400
.10.1016/j.jfluidstructs.2013.07.007
24.
Petrov
,
E. P.
,
2014
, “
Sensitivity Analysis of Multiharmonic Self-Excited Limit-Cycle Vibrations in Gas-Turbine Engine Structures With Nonlinear Contact Interfaces
,”
ASME
Paper No. GT2014-26673.10.1115/GT2014-26673
25.
Berthold
,
C.
,
Frey
,
C.
,
Dhondt
,
G.
, and
Schönenborn
,
H.
,
2018
, “
Fully Coupled Aeroelastic Simulations of Limit Cycle Oscillations in the Time Domain
,”
Proceedings of the 15th ISUAAAT
, University of Oxford, Oxford, UK, Sept. 24–27, 2018, Paper No. ISUAAAT15-061. https://www.researchgate.net/publication/330738403_FULLY_COUPLED_AEROELASTIC_SIMULATIONS_OF_LIMIT_CYCLE_OSCILLATIONS_IN_THE_TIME_DOMAIN
26.
Im
,
H.-S.
, and
Zha
,
G.-C.
,
2012
, “
Simulation of Non-Synchronous Blade Vibration of an Axial Compressor Using a Fully Coupled Fluid/Structure Interaction
,”
ASME
Paper No. GT2012-68150.10.1115/GT2012-68150
27.
Corral
,
R.
, and
Gallardo
,
J. M.
,
2014
, “
Nonlinear Dynamics of Bladed Disks With Multiple Unstable Modes
,”
AIAA J.
,
52
(
6
), pp.
1124
1132
.10.2514/1.J051812
28.
Berthold
,
C. R.
,
2016
, “
Development of a Coupled Fluid-Structure Simulation Method in the Frequency Domain
,”
Master's thesis
, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, The Netherlands. https://repository.tudelft.nl/islandora/object/uuid%3Ab9b9a646-0988-46fc-9e34-b750f5ecf3b1
29.
Berthold
,
C.
,
Gross
,
J.
,
Frey
,
C.
, and
Krack
,
M.
,
2019
, “
Numerical Investigation of Flutter Vibrations of Shrouded Turbine Blades With Fully-Coupled Nonlinear Frequency Domain Methods
,”
J. Fluids Struct.
, Epub.
30.
Firrone
,
C. M.
, and
Zucca
,
S.
,
2011
,
Modelling Friction Contacts in Structural Dynamics and Its Application to Turbine Bladed Disks
,
Intech
, Rijeka, Croatia.
31.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.10.1115/1.1539868
32.
Craig
,
R. R.
, and
Bampton
,
M. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
33.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry—Part I: Free Vibrations
,”
ASME J. Vib. Acoust., Stress, Reliab. Des.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
34.
Schlüß
,
D.
, and
Frey
,
C.
,
2018
, “
Time Domain Flutter Simulations of a Steam Turbine Stage Using Spectral 2D Non-Reflecting Boundary Conditions
,”
15th International Symposium on Unsteady Aerodynamics Aeroacoustics and Aeroelasticity Turbomachines
, University of Oxford, Oxford, UK, Sept. 24–27, 2018, Paper No.
ISUAAAT15-065
.https://www.researchgate.net/publication/329758473_Time_Domain_Flutter_Simulations_of_a_Steam_Turbine_Stage_Using_Sptectral_2D_Non-Reflecting_Boundary_Conditions
35.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
36.
Ashcroft
,
G.
,
Frey
,
C.
, and
Kersken
,
H.-P.
,
2014
, On the Development of a Harmonic Balance Method for Aeroelastic Analysis, Sixth European Conference on Computational Fluid Dynamics (
ECFD VI
), Barcelona, Spain, July 20–25, pp.
5885
5896
. https://www.semanticscholar.org/paper/On-the-development-of-a-harmonic-balance-method-for-Ashcroft-Frey/1eb8450cbd371884b9c13a283ad55bc75ca186bd?p2df
37.
Voigt
,
C.
,
Frey
,
C.
, and
Kersken
,
H.-P.
,
2010
, “
Development of a Generic Surface Mapping Algorithm for Fluid-Structure-Interaction Simulations in Turbomachinery
,”
V European Conference on Computational Fluid Dynamics ECCOMAS CFD
, Lisbon, Portugal, June 14–17.https://www.researchgate.net/publication/224991193_Development_of_a_Generic_Surface_Mapping_Algorithm_for_Fluid-Structure-Interaction_Simulations_in_Turbomachinery
38.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Vasco
,
C.
,
2007
, “
Aeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods
,”
ASME J. Turbomach.
,
129
(
1
), pp.
72
83
.10.1115/1.2366512
39.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Springer
, New York.
40.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME
Paper No. GT2014-25230.10.1115/GT2014-25230
41.
Ashcroft
,
G.
,
Frey
,
C.
, and
Kersken
,
H.-P.
,
2014
, “
On the Development of a Harmonic Balance Method for Aeroelastic Analysis
,”
Sixth European Conference on Computational Fluid Dynamics
(
ECFD VI
), Barcelona, Spain, July 20–25, pp.
5885
5896
.https://www.semanticscholar.org/paper/On-the-development-of-a-harmonic-balance-method-for-Ashcroft-Frey/1eb8450cbd371884b9c13a283ad55bc75ca186bd?p2df
42.
Kersken
,
H.-P.
,
Frey
,
C.
,
Voigt
,
C.
, and
Ashcroft
,
G.
,
2012
, “
Time-Linearized and Time-Accurate 3D RANS Methods for Aeroelastic Analysis in Turbomachinery
,”
ASME J. Turbomach.
,
134
(
5
), p.
051024
.10.1115/1.4004749
43.
Krack
,
M.
,
2015
, “
Nonlinear Modal Analysis of Nonconservative Systems: Extension of the Periodic Motion Concept
,”
Comput. Struct.
,
154
, pp.
59
71
.10.1016/j.compstruc.2015.03.008
You do not currently have access to this content.