Abstract

Excess energy generation from renewables can be conveniently stored as hydrogen for later use as a gas turbine fuel. Also, the strategy to sequestrate CO2 from natural gas (NG) will require gas turbines to run with hydrogen-based fuels. In such scenarios, high temperature low emission combustion of hydrogen is a key requirement for the future gas turbine market. Ansaldo Energia's gas turbines featuring sequential combustion have an intrinsic advantage when it comes to fuel flexibility and in particular hydrogen-based fuels. The sequential combustion system is composed of two complementary combustion stages in series: one premix stage followed by an auto-ignited second stage overcoming the limits of traditional premix combustion systems through a highly effective extra tuning parameter, i.e., the temperature between the first and the second stage. The standard constant pressure sequential combustion (CPSC) system as applied in the GT36 engine is tested, at high pressure, demonstrating that a modified operation concept allows stable combustion with no changes in combustor hardware for the whole range of NG and hydrogen blends. It is shown that in the range from 0% to 70% (vol.) hydrogen, stable combustion is achieved at full nominal exit temperature, i.e., without any derating and thus clearly outperforming other available conventional premixed combustors. Operation between 70% and 100% is possible as well and only requires a mild reduction of the combustor exit temperature. By proving the transferability of the single-can high pressure results to the engine, this paper demonstrates the practicality of operating the Ansaldo Energia GT36 H-Class gas turbine on fuels containing unprecedented concentrations of hydrogen while maintaining excellent performance and low emissions both in terms of NOx and CO2.

References

1.
U.S. Energy Information Administration
,
2017
, “International Energy Outlook 2017,” U.S. Energy Information Administration, Washington, DC, accessed May 7, 2018, https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
2.
Jentsch
,
M.
,
Trost
,
T.
, and
Sterner
,
M.
,
2014
, “
Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario
,”
Energy Procedia
,
46
, pp.
254
261
.10.1016/j.egypro.2014.01.180
3.
Goetz
,
M.
,
Lefebvre
,
J.
,
Mörs
,
F.
,
McDaniel Koch
,
A.
,
Graf
,
F.
,
Bajohr
,
S.
,
Reimert
,
R.
, and
Kolb
,
T.
,
2016
, “
Renewable Power-to-Gas: A Technological and Economic Review
,”
Renewable Energy
,
85
, pp.
1371
1390
.10.1016/j.renene.2015.07.066
4.
Weidner
,
S.
,
Faltenbacher
,
M.
,
François
,
I.
,
Thomas
,
D.
,
Skùlason
,
J. B.
, and
Maggi
,
C.
,
2018
, “
Feasibility Study of Large Scale Hydrogen Power-to-Gas Applications and Cost of the Systems Evolving With Scaling Up in Germany, Belgium and Iceland
,”
Int. J. Hydrogen Energy
,
43
(
33
), pp.
15625
15638
.10.1016/j.ijhydene.2018.06.167
5.
Boushaki
,
T.
,
Dhué
,
Y.
,
Selle
,
L.
,
Ferret
,
B.
, and
Poinsot
,
T.
,
2012
, “
Effects of Hydrogen and Steam Addition on Laminar Burning Velocity of Methane-Air Premixed Flame: Experimental and Numerical Analysis
,”
Int. J. Hydrogen Energy
,
37
(
11
), pp.
9412
9422
.10.1016/j.ijhydene.2012.03.037
6.
Ilbas
,
M.
,
Crayford
,
A. P.
,
Yilmaz
,
I.
,
Bowen
,
P. J.
, and
Syred
,
N.
,
2006
, “
Laminar-Burning Velocities of Hydrogen-Air and Hydrogen-Methane-Air Mixtures: An Experimental Study
,”
Int. J. Hydrogen Energy
,
31
(
12
), pp.
1768
1779
.10.1016/j.ijhydene.2005.12.007
7.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
8.
Beerer
,
D.
,
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2014
, “
Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031502
.10.1115/1.4025636
9.
Gazzani
,
M.
,
Chiesa
,
P.
,
Martelli
,
E.
,
Sigali
,
S.
, and
Brunetti
,
I.
,
2014
, “
Using Hydrogen as Gas Turbine Fuel: Premixed Versus Diffusive Flame Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051504
.10.1115/1.4026085
10.
Güthe
,
F.
,
Hellat
,
J.
, and
Flohr
,
P.
,
2009
, “
The Reheat Concept: The Proven Pathway to Ultralow Emissions and High Efficiency and Flexibility
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021503
.10.1115/1.2836613
11.
Düsing
,
K. M.
,
Ciani
,
A.
,
Benz
,
U.
,
Eroglu
,
A.
, and
Knapp
,
K.
,
2013
, “
Development of GT24 and GT26 (Upgrades 2011) Reheat Combustors Achieving Reduced Emissions and Increased Fuel Flexibility
,”
ASME
Paper No.
GT2013-95437. 10.1115/GT2013-95437
12.
Pennell
,
D.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No.
GT2017-64790. 10.1115/GT2017-64790
13.
Zahirovic
,
S.
, and
Knapp
,
K.
,
2017
, “
Ansaldo GT26 (2011) Sequential Combustor Performance in Long-Term Commercial Operation
,”
ASME
Paper No.
GT2017-64289. 10.1115/GT2017-64289
14.
Konduri
,
A.
,
Gruber
,
A.
,
Xu
,
C.
,
Lu
,
T.
,
Krisman
,
A.
,
Bothien
,
M. R.
, and
Chen
,
J. H.
,
2019
, “
Direct Numerical Simulation of Flame Stabilization Assisted by Autoignition in a Reheat Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2635
2642
.10.1016/j.proci.2018.06.084
15.
Robb
,
D.
,
2018
, “
Fuel Switching
,” Turbomachinery International, accessed Oct. 26, 2018, https://www.turbomachinerymag.com/fuel-switching
16.
Poyyapakkam
,
M.
,
Wood
,
J.
,
Mayers
,
S.
,
Ciani
,
A.
,
Guethe
,
F.
, and
Syed
,
K.
,
2012
, “
Hydrogen Combustion Within a Gas Turbine Reheat Combustor
,”
ASME
Paper No.
GT2012-69165. 10.1115/GT2012-69165
17.
Wind
,
T.
,
Güthe
,
F.
, and
Syed
,
K.
,
2014
, “
Co-Firing of Hydrogen and Natural Gases in Lean Premixed Conventional and Reheat Burners (Alstom GT26)
,”
ASME
Paper No.
GT2014-25813. 10.1115/GT2014-25813
18.
Carroni
,
R.
,
2006
, “
Development of a Gas Turbine Burner for the Lean-Premixed Combustion of H2-Rich Fuels
,”
Proceedings of GHGT-8
, Trondheim, Norway, June
19
22
.
19.
Gounder
,
J. D.
,
Boxx
,
I.
,
Kutne
,
P.
,
Wysocki
,
S.
, and
Biagioli
,
F.
,
2014
, “
Phase Resolved Analysis of Flame Structure in Lean Premixed Swirl Flames of a Fuel Staged Gas Turbine Model Combustor
,”
Combust. Sci. Technol.
,
186
(
4–5
), pp.
421
434
.10.1080/00102202.2014.883204
20.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A.
,
Stöhr
,
M.
,
Sadanandan
,
R.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2012
, “
Autoignition Limits of Hydrogen at Relevant Reheat Combustor Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041502
.10.1115/1.4004500
21.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2010
, “
Experimental Investigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Relevant Operating Conditions
,”
ASME
Paper No.
GT2010-22722. 10.1115/GT2010-22722
22.
Ciani
,
A.
,
Bothien
,
M. R.
,
Bunkute
,
B.
,
Wood
,
J. P.
, and
Früchtel
,
G.
,
2019
, “
Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines
,”
Proceedings of Global Power and Propulsion Society
, Zurich, Switzerland, Jan. 15–16, Paper No.
GPPS-TC-2019-0032
.10.33737/GPPS19-TC-032
23.
Goodwin
,
D.
,
2009
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Caltech, Pasadena, CA, accessed May 7, 2014, http://code.google.com/p/cantera
24.
Metcalfe
,
W.
,
Burke
,
S.
,
Ahmed
,
S.
, and
Curran
,
H.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1-C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinetics
,
45
(
10
), pp.
638
675
.10.1002/kin.20802
25.
Jiang
,
Y.
,
del Alamo
,
G.
,
Gruber
,
A.
,
Bothien
,
M. R.
,
Seshadri
,
K.
, and
Williams
,
F. A.
,
2019
, “
A Skeletal Mechanism for Prediction of Ignition Delay Times and Laminar Premixed Flame Velocities of Hydrogen-Methane Mixtures Under Gas Turbine Conditions
,”
Int. J. Hydrogen Energy
,
44
(
33
), pp.
18573
18585
.10.1016/j.ijhydene.2019.05.068
26.
Schulz
,
O.
, and
Noiray
,
N.
,
2017
, “
Combustion Regimes in Sequential Combustor
,”
First Global Power and Propulsion Forum
, Zurich, Switzerland, Jan. 16–18, Paper No. GPPF-2017-83.
27.
Ciani
,
A.
,
Eroglu
,
A.
,
Güthe
,
F.
, and
Paikert
,
B.
,
2010
, “
Full-Scale Atmospheric Tests of Sequential Combustion
,”
ASME
Paper No.
GT2010-22891. 10.1115/GT2010-22891
28.
Ghirardo
,
G.
,
Di Giovine
,
C.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2019
, “
Thermoacoustics of Can-Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011007
.10.1115/1.4040743
29.
Ghirardo
,
G.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2019
, “
Effect of Noise on Thermoacoustics of Can-Annular Combustors
,”
ASME
Paper No.
GT2019-90546. 10.1115/GT2019-90546
30.
Marissa Brower
,
M.
,
Petersen
,
E. L.
,
Metcalfe
,
W.
,
Curran
,
H. J.
,
Füri
,
M.
,
Bourque
,
G.
,
Aluri
,
N.
, and
Güthe
,
F.
,
2013
, “
Ignition Delay Time and Laminar Flame Speed Calculations for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021504
.10.1115/1.4007763
You do not currently have access to this content.