Improved internal combustion engine simulations of natural gas (NG) combustion under conventional and advanced combustion strategies have the potential to increase the use of NG in the transportation sector in the U.S. This study focused on the physics of turbulent flame propagation. The experiments were performed in a single-cylinder heavy-duty compression-ignition (CI) optical engine with a bowl-in piston that was converted to spark ignition (SI) NG operation. The size and growth rate of the early flame from the start of combustion (SOC) until the flame filled the camera field-of-view were correlated to combustion parameters determined from in-cylinder pressure data, under low-speed, lean-mixture, and medium-load conditions. Individual cycles showed evidence of turbulent flame wrinkling, but the cycle-averaged flame edge propagated almost circular in the two-dimensional (2D) images recorded from below. More, the flame-speed data suggested different flame propagation inside a bowl-in piston geometry compared to a typical SI engine chamber. For example, while the flame front propagated very fast inside the piston bowl, the corresponding mass fraction burn was small, which suggested a thick flame region. In addition, combustion images showed flame activity after the end of combustion (EOC) inferred from the pressure trace. All these findings support the need for further investigations of flame propagation under conditions representative of CI engine geometries, such as those in this study.

References

1.
Ferguson
,
C. R.
, and
Kirkpatrick
,
A. T.
,
2016
,
Internal Combustion Engines: Applied Thermosciences
, 3rd ed.,
Wiley
, Chichester, UK.
2.
Atobiloye
,
R. Z.
, and
Britter
,
R. E.
,
1994
, “
On Flame Propagation along Vortex Tubes
,”
Combust. Flame
,
98
(
3
), pp.
220
230
.
3.
U.S. DOE, 2017, “Natural Gas Vehicles,” U.S. Department of Energy, Alternative Fuels Data Center, Washington, DC, accessed May 4,
2017
, http://www.afdc.energy.gov/vehicles/natural_gas.html
4.
U.S. EIA,
2016
, “Annual Energy Outlook 2016 (AEO 2016),” U.S. Energy Information Administration, Washington, DC, Report No. DOE/EIA-0383, accessed May 04, 2017, https://www.eia.gov/outlooks/aeo/pdf/0383(2016).pdf
5.
U.S. Department of Energy, Alternative Fuels Data Center, 2017, “Natural Gas Fueling Station Locations,” U.S. Department of Energy, Alternative Fuels Data Center, Washington, DC, accessed May 04,
2017
, http://www.afdc.energy.gov/fuels/natural_gas_locations.html
6.
Liss
,
W. E.
,
Thrasher
,
W. H.
,
Steinmetz
,
G. F.
,
Chowdiah
,
P.
, and
Attari
,
A.
,
1992
, “Variability of Natural Gas Composition in Select Major Metropolitan Areas of the United States,” Institute of Gas Technology, Chicago, IL, Report No. GRI-92/0123.
7.
Yavuz
,
I.
,
Celik
,
I.
, and
McMillian
,
M. H.
,
2001
, “Knock Prediction in Reciprocating Gas-Engines Using Detailed Chemical Kinetics,”
SAE
Paper No. 2001-01-1012.
8.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2010
, “
On Flame Kernel Formation and Propagation in Premixed Gases
,”
Combust. Flame
,
157
(
12
), pp.
2211
2221
.
9.
McTaggart-Cowan
,
G.
,
Mann
,
K.
,
Wu
,
N.
, and
Munshi
,
S.
,
2014
, “
An Efficient Direct-Injection of Natural Gas Engine for Heavy Duty Vehicles
,”
SAE
Paper No. 2014-01-1332.
10.
Dronniou
,
N.
,
Kashdan
,
J.
,
Lecointe
,
B.
,
Sauve
,
K.
, and
Soleri
,
D.
,
2014
, “
Optical Investigation of Dual-Fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions
,”
SAE Int. J. Engines
,
7
(
2
), pp.
873
887
.
11.
Dahodwala
,
M.
,
Joshi
,
S.
,
Koehler
,
E.
,
Franke
,
M.
, and
Tomazic
,
D.
,
2015
, “
Experimental and Computational Analysis of Diesel-Natural Gas RCCI Combustion in Heavy-Duty Engines
,”
SAE
Paper No. 2015-01-0849.
12.
Andreassi
,
L.
,
Cordiner
,
S.
,
Mulone
,
V.
,
Reynolds
,
C.
, and
Evans
,
R. L.
,
2005
, “
A Mixed Numerical-Experimental Analysis for the Development of a Partially Stratified Compressed Natural Gas Engine
,”
SAE
Paper No. 2005-24-029.
13.
Reynolds
,
C. C. O.
,
Evans
,
R. L.
,
Andreassi
,
L.
,
Cordiner
,
S.
, and
Mulone
,
V.
,
2005
, “
The Effect of Varying the Injected Charge Stoichiometry in a Partially Stratified Charge Natural Gas Engine
,”
SAE
Paper No. 2005-01-0247.
14.
Beretta
,
G. P.
,
Rashidi
,
M.
, and
Keck
,
J. C.
,
1983
, “
Turbulent Flame Propagation and Combustion in Spark Ignition Engines
,”
Combust. Flame
,
52
, pp.
217
245
.
15.
Geiger
,
J.
,
Pischinger
,
S.
,
Böwing
,
R.
,
Koß
,
H.-J.
, and
Thiemann
,
J.
,
1999
, “
Ignition Systems for Highly Diluted Mixtures in Si-Engines
,”
SAE
Paper No. 1999-01-0799.
16.
Melaika
,
M.
, and
Dahlander
,
P.
,
2016
, “
Experimental Investigation of Methane Direct Injection With Stratified Charge Combustion in Optical Si Single Cylinder Engine
,”
SAE
Paper No. 2016-01-0797.
17.
Wang
,
Y.
,
Zhang
,
J.
,
Wang
,
X.
,
Dice
,
P.
,
Shahbakhti
,
M.
,
Naber
,
J.
,
Czekala
,
M.
,
Qu
,
Q.
, and
Huberts
,
G.
,
2017
, “
Investigation of Impacts of Spark Plug Orientation on Early Flame Development and Combustion in a DI Optical Engine
,”
SAE Int. J. Engines
,
10
(
3
), pp.
995
1010
.
18.
Keck
,
J. C.
,
1982
, “
Turbulent Flame Structure and Speed in Spark-Ignition Engines
,”
Symp. (Int.) Combust.
,
19
(
1
), pp.
1451
1466
.
19.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
20.
Rahim
,
F.
,
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2002
, “
Burning Velocity Measurements of Methane-Oxygen-Argon Mixtures and an Application to Extend Methane-Air Burning Velocity Measurements
,”
Int. J. Engine Res.
,
3
(
2
), pp.
81
92
.
21.
Bradley
,
D.
,
Gaskell
,
P. H.
, and
Gu
,
X. J.
,
1996
, “
Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study
,”
Combust. Flame
,
104
(
1–2
), pp.
176
198
.
22.
Sinibaldi
,
J. O.
,
Driscoll
,
J. F.
,
Mueller
,
C. J.
,
Donbar
,
J. M.
, and
Carter
,
C. D.
,
2003
, “
Propagation Speeds and Stretch Rates Measured Along Wrinkled Flames to Assess the Theory of Flame Stretch
,”
Combust. Flame
,
133
(
3
), pp.
323
334
.
23.
Egolfopoulos
,
F. N.
,
Hansen
,
N.
,
Ju
,
Y.
,
Kohse-Höinghaus
,
K.
,
Law
,
C. K.
, and
Qi
,
F.
,
2014
, “
Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
43
, pp.
36
67
.
24.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–N-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
(
1–2
), pp.
126
144
.
25.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.
You do not currently have access to this content.