The stabilization of premixed flames within a swirling flow produced by an axial-plus-tangential swirler is investigated in an atmospheric test rig. In this system, flames are stabilized aerodynamically away from the solid components of the combustor without the help of any solid anchoring device. Experiments are reported for lean CH4/air mixtures, eventually also diluted with N2, with injection Reynolds numbers varying from 8500 to 25,000. Changes of the flame shape are examined with OH* chemiluminescence and OH laser-induced fluorescence measurements as a function of the operating conditions. Particle image velocimetry (PIV) measurements are used to reveal the structure of the velocity field in nonreacting and reacting conditions. It is shown that the axial-plus-tangential swirler allows to easily control the flame shape and the position of the flame leading edge with respect to the injector outlet. The ratio of the bulk injection velocity over the laminar burning velocity Ub/SL, the adiabatic flame temperature Tad, and the swirl number S0 are shown to control the flame shape and its position inside the combustion chamber. It is then shown that the axial velocity field produced by the axial-plus-tangential swirler is different from those produced by purely axial or radial devices. It takes here a W-shape profile with three local maxima and two minima. The mean turbulent flame front also takes this W-shape in an axial plane, with two lower positions located slightly off-axis and corresponding to the positions where the axial flow velocity is the lowest. It is finally shown that these positions can be inferred from axial flow velocity profiles under nonreacting conditions.

References

1.
Feikema
,
D.
,
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
.
2.
Döbbeling
,
K.
,
Knöpfel
,
H. P.
,
Polifke
,
W.
,
Winkler
,
D.
,
Steinbach
,
C.
, and
Sattelmayer
,
T.
,
1996
, “
Low NOx Premixed Combustion of MBtu Fuels Using the ABB Double Cone Burner (EV Burner)
,”
ASME J. Eng. Gas Turbines Power
,
118
(
1
), pp.
46
53
.
3.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
.
4.
Biagioli
,
F.
,
2006
, “
Stabilization Mechanism of Turbulent Premixed Flames in Strongly Swirled Flows
,”
Combust. Theory Modell.
,
10
(
3
), pp.
389
412
.
5.
Biagioli
,
F.
,
Güthe
,
F.
, and
Schuermans
,
B.
,
2008
, “
Combustion Dynamics Linked to Flame Behaviour in a Partially Premixed Swirled Industrial Burner
,”
Exp. Therm. Fluid Sci.
,
32
(
7
), pp.
1344
1353
.
6.
Paschereit
,
C. O.
,
Flohr
,
P.
,
Knöpfel
,
H.
,
Geng
,
W.
,
Steinbach
,
C.
,
Stuber
,
P.
,
Bengtsson
,
K.
, and
Gutmark
,
E.
,
2002
, “
Combustion Control by Extended EV Burner Fuel Lance
,”
ASME
Paper No. GT2002-30462.
7.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Processing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(2), pp.
93
161
.
8.
Rawe
,
R.
, and
Kremer
,
H.
,
1981
, “
Stability Limits of Natural Gas Diffusion Flames With Swirl
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
667
677
.
9.
Mongia
,
H. C.
,
2011
, “
Engineering Aspects of Complex Gas Turbine Combustion Mixers—Part IV: Swirl Cup
,”
AIAA
Paper No. AIAA 2011-5526.
10.
Fanaca
,
D.
,
Alemela
,
P. R.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2010
, “
Comparison of the Flow Field of a Swirl Stabilized Premixed Burner in an Annular and a Single Burner Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
071502
.
11.
Guiberti
,
T.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(2), pp.
1385
1392
.
12.
Chong
,
L. T. W.
,
Komarek
,
T.
,
Zellhuber
,
M.
,
Lenz
,
J.
,
Hirsch
,
C.
, and
Polifke
,
W.
,
2009
, “
Influence of Strain and Heat Loss on Flame Stabilization in a Non-Adiabatic Combustor
,”
Fourth European Combustion Meeting
, Vienna, Austria, Apr. 14–17.
13.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, Kent, UK
.
14.
Chterev
,
I.
,
Sundararajan
,
G.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2015
, “
Precession Effects on the Relationship Between Time-Averaged and Instantaneous Swirl Flow and Flame Characteristics
,”
ASME
Paper No. GT2015-42768.
15.
Toh
,
I.
,
Honnery
,
D.
, and
Soria
,
J.
,
2010
, “
Axial plus Tangential Entry Swirling Jet
,”
Exp. Fluids
,
48
(2), pp.
309
325
.
16.
Burmberger
,
S.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Designing a Radial Swirler Vortex Breakdown Burner
,”
ASME
Paper No. GT2006-90497.
17.
Burmberger
,
S.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Design Rules for the Velocity Field of Vortex Breakdown Swirl Burners
,”
ASME
Paper No. GT2006-90495.
18.
Syred
,
N.
, and
Beér
,
J.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(2), pp.
143
201
.
19.
Al-Abdeli
,
Y. M.
, and
Masri
,
A. R.
,
2015
, “
Review of Laboratory Swirl Burners and Experiments for Model Validation
,”
Exp. Therm. Fluid Sci.
,
69
, pp.
178
196
.
20.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(9), pp.
1729
1742
.
21.
Claypole
,
T.
, and
Syred
,
N.
,
1981
, “
The Effect of Swirl Burner Aerodynamics on NOx Formation
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
81
89
.
22.
Sheen
,
H.
,
Chen
,
W.
,
Jeng
,
S.
, and
Huang
,
T.
,
1996
, “
Correlation of Swirl Number for a Radial-Type Swirl Generator
,”
Exp. Therm. Fluid Sci.
,
12
(
4
), pp.
444
451
.
23.
Holäpfel
,
F.
,
Lene
,
B.
, and
Leuckel
,
W.
,
1996
, “
Swirl-Induced Intermittency: A Novel Effect Modifying the Turbulence Structure of Swirling Free Jets
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
187
194
.
24.
Kalt
,
P. A.
,
Al-Abdell
,
Y. M.
,
Masri
,
A. R.
, and
Barlow
,
R. S.
,
2002
, “
Swirling Turbulent Non-Premixed Flames of Methane: Flow Field and Compositional Structure
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1913
1919
.
25.
Jourdaine
,
P.
,
Mirat
,
C.
,
Beaunier
,
J.
,
Caudal
,
J.
,
Joumani
,
Y.
, and
Schuller
,
T.
,
2016
, “
Effect of Quarl on N2- and CO2-Diluted Methane Oxy-Flames Stabilized by an Axial-Plus-Tangential Swirler
,”
ASME
Paper No. GT2016-56953.
26.
Darabiha
,
N.
,
1992
, “
Transient Behaviour of Laminar Counterflow Hydrogen-Air Diffusion Flames With Complex Chemistry
,”
Combust. Sci. Technol.
,
86
(1–6), pp.
163
181
.
27.
Docquier
,
N.
, and
Candel
,
S.
,
2002
, “
Combustion Control and Sensors: A Review
,”
Prog. Energy Combust. Sci.
,
28
(2), pp.
107
150
.
28.
Glassman
,
I.
, and
Yetter
,
R. A.
,
2008
,
Combustion
, 4th ed.,
Academic Press
, London.
29.
Eckbreth
,
A.
,
1996
,
Laser Diagnostics for Combustion Temperature and Species
,
Gordon & Breach
, Amsterdam, The Netherlands.
30.
Hassel
,
E. P.
, and
Linow
,
S.
,
2000
, “
Laser Diagnostics for Studies of Turbulent Combustion
,”
Meas. Sci. Technol.
,
11
(
2
), pp.
R37–R57
.
31.
Hartung
,
G.
,
Hult
,
J.
,
Kaminski
,
C. F.
,
Rogerson
,
J. W.
, and
Swaminathan
,
N.
,
2008
, “
Effect of Heat Release on Turbulence and Scalar-Turbulence Interaction in Premixed Combustion
,”
Phys. Fluids
,
20
(
3
), p.
035110
.
32.
Lam
,
K.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2013
, “
A Shock Tube Study of H2 + OH → H2O + H Using OH Laser Absorption
,”
Int. J. Chem. Kinetics
,
45
(
6
), pp.
363
373
.
33.
Durox
,
D.
,
Ducruix
,
S.
, and
Lacas
,
F.
,
1999
, “
Flow Seeding With an Air Nebulizer
,”
Exp. Fluids
,
27
(5), pp.
408
413
.
34.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041502
.
35.
Ghoniem
,
A. F.
, and
Knio
,
O. M.
,
1988
, “
Numerical Simulation of Flame Propagation in Constant Volume Chambers
,”
Symp. (Int.) Combust.
,
21
(1), pp.
1313
1320
.
36.
Guiberti
,
T. F.
,
Durox
,
D.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2015
, “
Analysis of Topology Transitions of Swirl Flames Interacting With the Combustor Side Wall
,”
Combust. Flame
,
162
(
11
), pp.
4342
4357
.
37.
Schneider
,
C.
,
Dreizler
,
A.
, and
Janicka
,
J.
,
2005
, “
Fluid Dynamical Analysis of Atmospheric Reacting and Isothermal Swirling Flows
,”
Turbul. Combust.
,
74
(
1
), pp.
103
127
.
You do not currently have access to this content.