A detailed look at the gas turbine (GT) technology over the last three decades clearly shows that an asymptotic limit is reached in thermal efficiency in combined cycle (CC) configuration. There is little reason to expect a technology leap anytime soon to change this appreciably as long as the industry sticks to the classic Brayton cycle configuration and the brute force approach of ever higher turbine inlet temperatures (TITs). The changing landscape of electric power generation, especially integration of fossil fuel fired technologies with renewable generation and wide variation in natural gas prices, suggests that it is time to look at the direction of future development efforts differently. This paper looks at the need of a paradigm shift in GT CC technology using thermodynamic and economic arguments.

References

1.
Gülen
,
S. C.
,
2015
, “
Étude on Gas Turbine Combined Cycle Power Plant—Next 20 Years
,”
ASME
Paper No. GT2015-42077.
2.
Ito
,
E.
,
Tsukagoshi
,
K.
,
Muyama
,
A.
,
Masada
,
J.
, and
Torigoe
,
T.
,
2011
, “
Development of Key Technology for an Ultra-High-Temperature Gas Turbine
,”
MHI Tech. Rev.
,
48
(
3
), pp.
1
8
.
3.
Ali
,
S. A.
,
2007
,
The Role of Fuel Cells in Generating Clean Power and Reducing Greenhouse Gas Emissions, Advanced Combustion and Aerothermal Technologies
,
Springer
, Berlin, pp.
385
403
.
4.
U.S. DOE, Office of Fossil Energy,
2013
, “Solid Oxide Fuel Cells,” Clean Coal Research Program, Technology Program Plan, U.S. Department of Energy, Washington, DC.
5.
Van Roode
,
M.
,
2010
, “
Ceramic Gas Turbine Development: Need for a 10 Year Plan
,”
ASME J. Eng. Gas Turbine Power
,
132
(
1
), p.
011301
.
6.
Grondahl
,
C. M.
, and
Tsuchiya
,
T.
,
2001
, “
Performance Benefit Assessment of Ceramic Component in an MS9001FA Gas Turbine
,”
ASME J. Eng. Gas Turbine Power
,
123
(
3
), pp.
513
519
.
7.
Lefebvre
,
A.
,
1995
, “
The Role of Fuel Preparation in Low-Emission Combustion
,”
ASME J. Eng. Gas Turbine Power
,
117
(
4
), pp.
617
654
.
8.
Richards
,
G. A.
,
McMillan
,
M. M.
,
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Cully
,
S. R.
,
2001
, “
Issues for Low-Emission, Fuel-Flexible Power Systems
,”
Prog. Energy Combust. Sci.
,
27
(
2
), pp.
141
169
.
9.
Smith
,
R. W.
, and
Gülen
,
S. C.
,
2012
, “
Natural Gas Power
,”
Encyclopedia of Sustainability Science and Technology
,
R. A.
Meyers
, ed., Vol.
10
,
Springer Verlag
, Berlin, pp.
6804
6852
.
10.
Gülen
,
S. C.
,
2014
, “
General Electric—Alstom Merger Brings Visions of the Überturbine
,”
Gas Turbine World
, Southport, CT, pp.
28
35
.
11.
Eckardt
,
D.
,
2014
,
Gas Turbine Powerhouse—the Development of the Power Generation Gas Turbine at BBC–ABB–Alstom
,
Oldenburg Verlag
,
München, Germany
.
12.
Gas Turbine World
,
1998
,
Gas Turbine World 1998–1999 Handbook
, Vol.
19
,
Pequot Publishing
,
Fairfield, CT
.
13.
Gas Turbine World
,
2014
,
Gas Turbine World 2014-2015 Handbook
, Vol.
31
,
Pequot Publishing
,
Fairfield, CT
.
14.
Imwinkelried
,
B.
,
1995
, “
Advanced Cycle System Gas Turbines GT24/GT26—the Highly Efficient Gas Turbines for Power Generation
,” 21st International Congress on Combustion Engines, Interlaken, Switzerland.
15.
EPRIGEN
,
1998
, “Thermal Performance of the ABB GT24 Gas Turbine in Peaking Service at the Gilbert Station of GPU Energy,” EPRIGEN, Palo Alto, CA, Report No. EPRI TR-111644.
16.
Amann
,
C. A.
,
2005
, “
Applying Thermodynamics in Search of Superior Engine Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
670
675
.
17.
Gülen
,
S. C.
,
2010
, “
Gas Turbine With Constant Volume Heat Addition
,”
ASME
Paper No. ESDA2010-24817.
18.
Reynst
,
F. H.
,
1961
,
Pulsating Combustion—the Collected Works of F. H. Reynst
,
M. W.
Thring
, ed.,
Pergamon Press
, Oxford, UK.
19.
Gülen
,
S. C.
,
2013
, “
Constant Volume Combustion: The Ultimate Gas Turbine Cycle
,”
Gas Turbine World
, Southport, CT, pp.
20
27
.
20.
Fickett
,
W.
, and
Davis
,
W. C.
,
1979
,
Detonation
,
University of California Press
, Berkeley, CA.
21.
Kailasanath
,
K.
,
2000
, “
Review of Propulsion Applications of Detonation Waves
,”
AIAA J.
,
38
(
9
), pp.
1698
1708
.
22.
Tangirala
,
V. E.
,
Rasheed
,
A.
, and
Dean
,
A. J.
,
2007
, “
Performance of a Pulse Detonation Combustor-Based Hybrid Engine
,”
ASME
Paper No. GT2007-28056.
23.
Tangirala
,
V. E.
, and
Joshi
,
N. D.
,
2008
, “
Systems Level Performance Estimations for a Pulse Detonation Combustor-Based Hybrid Engine
,”
ASME
Paper No. GT2008-51525.
24.
Tangirala
,
V. E.
,
Dunton
,
R. A.
,
Glaser
,
A.
, and
Rasheed
,
A.
,
2009
, “
Validation of the Simulations of a Pulse Detonation Engine With Exit Nozzles
,” General Electric, Boston, MA, Internal Report.
25.
Hofer
,
D. C.
,
Tangirala
,
V. E.
, and
Suresh
,
A.
,
2009
, “
Performance Metrics for Pulse Detonation Combustor Hybrid Systems
,”
AIAA
Paper No. 2009-292.
26.
Stodola
,
A.
,
1927
,
Steam and Gas Turbines, Authorized Translation From the 6th German Edition by L. C. Löwenstein
, Vol.
2
,
McGraw-Hill
,
New York
, p.
1237
.
27.
Zaugg
,
P.
, and
Lang
,
N.
,
1999
,
Ein Doppeltes Gasturbinen-Jubiläum Und Seine Bedeutung Für Die Region
, Vol.
74
,
Badener Neujahrsblätter
, Baden, Switzerland, pp.
172
181
.
28.
Hoffeins
,
H.
,
Romeyke
,
N.
,
Hebel
,
D.
, and
Sütterlin
,
F.
,
1980
,
Die Inbetriebnahme Der Ersten Luftspeicher-Gasturbinengruppe
, Vol.
67-8
,
Brown Boveri Mitteilungen
, Baden, Switzerland, pp.
465
473
.
29.
Thermoflow,
2015
,
Thermoflow Suite Version 24.1.1, Revision
,
Thermoflow
,
Southborough, MA
.
30.
Gülen
,
S. C.
,
2013
, “
What is the Worth of 1 Btu/kWh of Heat Rate?
,” Power Magazine, Houston, TX, pp.
60
63
.
31.
Gülen
,
S. C.
,
2016
, “
Turbo-Compound Reheat Combined Cycle Power Generation
,” Bechtel Power Corp, Leesburg, VA, US Patent
9,249,723
.https://patents.google.com/patent/US9249723
32.
Gülen
,
S. C.
, and
Boulden
,
M. S.
,
2015
, “
Turbocompound Reheat Gas Turbine Combined Cycle
,” Power-Gen International 2015, Las Vegas, NV, Dec. 8–10.
33.
Gülen
,
S. C.
,
2015
, “
Turbocompound Reheat Gas Turbine Combined Cycle—The Mouse That Roars
,” Gas Turbine World, Southport, CT, pp.
22
28
.
You do not currently have access to this content.