As noise pollution remains one of the biggest hurdles posed by thermal engines, increasing efforts are made to alleviate the generation of combustion noise from the early design stage of the chamber. Since the complexity of both modern chamber geometries and the combustion process itself precludes robust analytic solutions, and since the resonant, highly three-dimensional pressure field is difficult to be measured experimentally, focus is put on the numerical modeling of the process. However, in order to optimize the resources devoted to this simulation, an informed decision must be made on which formulations are followed. In this work, the experimental cyclic dispersion of the in-cylinder pressure is analyzed in two typical compression-ignited (CI) and spark-ignited (SI) engines. Acoustic signatures and pressure rise rates (PRRs) are derived from these data, showing how while the preponderance of flame front propagation and dependency of previous cycle in SI engine noise usually calls for multicycle, more complex turbulence modeling such as large Eddy simulation (LES), simpler unsteady Reynolds-averaged Navier-Stokes (URANS) formulations can accurately characterize the more consistent pressure spectra of CI thermal engines, which feature sudden autoignition as the main noise source.
Skip Nav Destination
Article navigation
October 2018
Research-Article
Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling
Alberto Broatch,
Alberto Broatch
CMT-Motores Térmicos,
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: abroatch@mot.upv.es
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: abroatch@mot.upv.es
Search for other works by this author on:
J. Javier Lopez,
J. Javier Lopez
CMT-Motores Térmicos,
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jolosan3@mot.upv.es
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jolosan3@mot.upv.es
Search for other works by this author on:
Jorge García-Tíscar,
Jorge García-Tíscar
CMT-Motores Térmicos,
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jorgarti@mot.upv.es
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jorgarti@mot.upv.es
Search for other works by this author on:
Josep Gomez-Soriano
Josep Gomez-Soriano
CMT-Motores Térmicos,
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jogoso1@mot.upv.es
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jogoso1@mot.upv.es
Search for other works by this author on:
Alberto Broatch
CMT-Motores Térmicos,
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: abroatch@mot.upv.es
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: abroatch@mot.upv.es
J. Javier Lopez
CMT-Motores Térmicos,
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jolosan3@mot.upv.es
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jolosan3@mot.upv.es
Jorge García-Tíscar
CMT-Motores Térmicos,
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jorgarti@mot.upv.es
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jorgarti@mot.upv.es
Josep Gomez-Soriano
CMT-Motores Térmicos,
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jogoso1@mot.upv.es
Universitat Politècnica de València,
Camino de Vera,
Valencia 46022, Spain
e-mail: jogoso1@mot.upv.es
1Corresponding author.
Contributed by the IC Engine Division of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received November 29, 2017; final manuscript received May 8, 2018; published online June 25, 2018. Assoc. Editor: Alessandro Ferrari.
J. Eng. Gas Turbines Power. Oct 2018, 140(10): 102808 (8 pages)
Published Online: June 25, 2018
Article history
Received:
November 29, 2017
Revised:
May 8, 2018
Citation
Broatch, A., Javier Lopez, J., García-Tíscar, J., and Gomez-Soriano, J. (June 25, 2018). "Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling." ASME. J. Eng. Gas Turbines Power. October 2018; 140(10): 102808. https://doi.org/10.1115/1.4040287
Download citation file:
Get Email Alerts
Cited By
Image-based flashback detection in a hydrogen-fired gas turbine using a convolutional autoencoder
J. Eng. Gas Turbines Power
Fuel Thermal Management and Injector Part Design for LPBF Manufacturing
J. Eng. Gas Turbines Power
An investigation of a multi-injector, premix/micromix burner burning pure methane to pure hydrogen
J. Eng. Gas Turbines Power
Related Articles
Spark Advance Modeling of Hydrogen-Fueled Spark Ignition Engines Using Combustion Descriptors
J. Eng. Gas Turbines Power (August,2018)
Real-Time Processing of Engine Acoustic Emission for Diesel Injectors Diagnostic and Recentering
J. Eng. Gas Turbines Power (September,2018)
Numerical Investigation of the Effect of Knock on Heat Transfer in a Turbocharged Spark Ignition Engine
J. Eng. Gas Turbines Power (December,2015)
Broadband Combustion Noise Simulation of the PRECCINSTA Burner Based on Stochastic Sound Sources
J. Eng. Gas Turbines Power (January,2017)
Related Chapters
Physiology of Human Power Generation
Design of Human Powered Vehicles
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Occlusion Identification and Relief within Branched Structures
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling