Continuously increasing hot gas temperatures in heavy duty gas turbines lead to increased thermal loadings of the hot gas path materials. Thermal barrier coatings (TBCs) are used to reduce the superalloys temperature and cooling air needs. Until now 6–8 wt. % yttria stabilized zirconia (YSZ) is the first choice material for such coatings, but it is slowly reaching its maximum temperature capability due to the phase transformation at high temperature and sintering. New thermal barrier coating material with increased temperature capability enables the next generation of gas turbine with >60% combined cycle efficiency. Such material solutions have been developed through a multistage selection process. In a first step, critical material performance requirements for thermal barrier coating performance have been defined based on the understanding of standard TBC degradation mechanisms. Based on these requirements, more than 30 materials were a preselected and evaluated as potential coating materials. After carefully reviewing their properties both from literature data and laboratory test results on raw materials, five materials were selected for coating manufacturing and laboratory testing. Based on the coating manufacturing trials and laboratory test results, two materials have been selected for engine testing, in a first step in GT26 Birr Test Power Plant and afterward in customer engines. For such tests, the original coating thickness has been increased such to achieve coating surface temperature ∼100 K higher than with a standard thermal barrier coating. Both coatings performed as predicted in both GT26 Birr Test Power Plant and customer engines.

References

1.
Miller
,
R. A.
,
Smialek
,
J. L.
,
Garlick
,
R. G.
, and
Heuer
,
A. H.
,
1981
, “
Phase Stability in Plasma Sprayed Partially Stabilized Zirconia Yttria
,”
First International Conference on the Science and Technology of Zirconia, Science and Technology of Zirconia
, Cleveland, OH, June 16–18, pp.
241
253
.
2.
Scott
,
H. G.
,
1975
, “
Phase Relationships in the Zirconia-Yttria System
,”
J. Mater. Sci.
,
10
(
9
), pp.
1527
1535
.
3.
Krogstad
,
J. A.
,
Krämer
,
S.
,
Lipkin
,
D. M.
,
Johnson
,
C. A.
,
Mitchell
,
D. R. G.
,
Cairney
,
J. M.
, and
Levi
,
C. G.
,
2011
, “
Phase Stability of t′-Zirconia-Based Thermal Barrier Coatings: Mechanistic Insights
,”
J. Am. Ceram. Soc.
,
94
(S
1
), pp.
S168
S177
.
4.
Witz
,
G.
,
Shklover
,
V.
,
Steurer
,
W.
,
Bachegowda
,
S.
, and
Bossmann
,
H.-P.
,
2007
, “
Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns
,”
J. Am. Ceram. Soc.
,
90
(
9
), pp.
2935
2940
.
5.
Bansal
,
N. P.
, and
Zhu
,
D.
,
2007
, “
Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings
,”
Mater. Sci. Eng. A
,
459
(1–2), pp.
192
195
.
6.
Bhattacharya
,
A. K.
,
Shklover
,
V.
,
Steurer
,
W.
,
Witz
,
G.
,
Bossmann
,
H.-P.
, and
Fabrichnaya
,
O.
, 2011, “
Ta2O5–Y2O3–ZrO2 System: Experimental Study and Preliminary Thermodynamic Description
,”
J. Eur. Ceram. Soc.
,
31
(
3
), pp.
249
257
.
7.
Bisson
,
J.-F.
,
Fournier
,
D.
,
Poulain
,
M.
,
Lavigne
,
O.
, and
Mévrel
,
R.
,
2000
, “
Thermal Conductivity of Yttria–Zirconia Single Crystals, Determined With Spatially Resolved Infrared Thermography
,”
J. Am. Ceram. Soc.
,
83
(
8
), pp.
993
998
.
8.
Brandon
,
J. R.
, and
Taylor
,
R.
,
1991
, “
Phase Stability of Zirconia-Based Thermal Barrier Coatings Part II. Zirconia—Ceria Alloys
,”
Surf. Coat. Technol.
,
46
(
1
), pp.
91
101
.
9.
Cano
,
C.
,
Osendi
,
M. I.
,
Belmonte
,
M.
, and
Miranzo
,
P.
,
2006
, “
Effect of the Type of Flame on the Microstructure of CaZrO3 Combustion Flame Sprayed Coatings
,”
Surf. Coat. Technol.
,
201
(
6
), pp.
3307
3313
.
10.
Cao
,
X.
,
Vassen
,
R.
,
Jungen
,
W.
,
Schwartz
,
S.
,
Tietz
,
F.
, and
Stöver
,
D.
,
2001
, “
Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating
,”
J. Am. Ceram. Soc.
,
84
(
9
), pp.
2086
2090
.
11.
Cao
,
X.
,
Vassen
,
R.
,
Fischer
,
W.
,
Tietz
,
F.
,
Jungen
,
W.
, and
Stöver
,
D.
,
2003
, “
Lanthanum-Cerium Oxide as a Thermal Barrier-Coating Material for High-Temperature Applications
,”
Adv. Mater.
,
15
(
17
), pp.
1438
1442
.
12.
Cao
,
X.
,
Vassen
,
R.
, and
Stöver
,
D.
,
2004
, “
Ceramic Materials for Thermal Barrier Coatings
,”
J. Eur. Ceram. Soc.
,
24
(
1
), pp.
1
10
.
13.
Cao
,
X.
,
Vassen
,
R.
,
Tietz
,
F.
, and
Stöver
,
D.
,
2006
, “
New Double-Ceramic-Layer Thermal Barrier Coatings Based on Zirconia–Rare Earth Composite Oxides
,”
J. Eur. Ceram. Soc.
,
26
(
3
), pp.
247
251
.
14.
Chen
,
Z.
,
Trice
,
R.
,
Wang
,
H.
,
Porter
,
W.
,
Howe
,
J.
,
Besser
,
M.
, and
Sordelet
,
D.
,
2005
, “
Co-Doping of Air Plasma-Sprayed Yttria- and Ceria-Stabilized Zirconia for Thermal Barrier Applications
,”
J. Am. Ceram. Soc.
,
88
(
6
), pp.
1584
1590
.
15.
Clarke
,
D. R.
, and
Levi
,
C. G.
,
2003
, “
Materials Design for the Next Generation Thermal Barrier Coatings
,”
Annu. Rev. Mater. Res.
,
33
(
1
), pp.
383
417
.
16.
Evans
,
A. G.
,
Clarke
,
D. R.
, and
Levi
,
C. G.
,
2008
, “
The Influence of Oxides on the Performance of Advanced Gas Turbines
,”
J. Eur. Ceram. Soc.
,
28
(
7
), pp.
1405
1419
.
17.
Friedrich
,
C.
,
Gadow
,
R.
, and
Schirmer
,
T.
,
2000
, “
Lanthanum Hexaaluminate—A New Material for Atmospheric Plasma Spraying of Advanced Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
10
(
4
), pp.
592
598
.
18.
Fukuda
,
K.
, and
Matsubara
,
H.
,
2005
, “
Thermal Expansion of SrY2O4
,”
J. Am. Ceram. Soc.
,
88
(
11
), pp.
3205
3206
.
19.
Han
,
Z.
,
Xu
,
B.
,
Wang
,
H.
, and
Zhou
,
S.
,
2007
, “
Comparison of Thermal Shock Behavior Between Currently Plasma Spray and Supersonic Plasma Spray CeO2–Y2O3–ZrO2 Graded Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
201
(9–11), pp.
5253
5256
.
20.
Leckie
,
R. M.
,
Krämer
,
S.
,
Rühle
,
M.
, and
Levi
,
C. G.
,
2005
, “
Thermochemical Compatibility Between Alumina and ZrO2–Gd3O2 Thermal Barrier Coatings
,”
Acta Mater.
,
53
(
11
), pp.
3281
3292
.
21.
Lee
,
E. Y.
,
Sohn
,
Y.-H.
,
Jha
,
S. K.
,
Holmes
,
J. W.
, and
Sisson
,
R. D.
, Jr.
,
2002
, “
Phase Transformations of Plasma-Sprayed Zirconia–Ceria Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
85
(
8
), pp.
2065
2071
.
22.
Lehmann
,
H.
,
Pitzer
,
D.
,
Pracht
,
G.
,
Vassen
,
R.
, and
Stöver
,
D.
,
2003
, “
Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System
,”
J. Am. Ceram. Soc.
,
86
(
8
), pp.
1338
1344
.
23.
Leoni
,
M.
,
Jones
,
R. L.
, and
Scardi
,
P.
,
1998
, “
Phase Stability of Scandia–Yttria-Stabilized Zirconia TBCs
,”
Surf. Coat. Technol.
,
108–109
, pp.
107
113
.
24.
Levi
,
C. G.
,
2004
, “
Emerging Materials and Processes for Thermal Barrier Systems
,”
Curr. Opin. Solid State Mater. Sci.
,
8
(
1
), pp.
77
91
.
25.
Ling
,
L.
,
Qiang
,
X.
,
Fuchi
,
W.
, and
Hongsong
,
Z.
,
2008
, “
Thermophysical Properties of Complex Rare-Earth Zirconate Ceramic for Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
91
(
7
), pp.
2398
2401
.
26.
Ma
,
W.
,
Mack
,
D. E.
,
Vassen
,
R.
, and
Stöver
,
D.
,
2008
, “
Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
91
(
8
), pp.
2630
2635
.
27.
Maekawa
,
T.
, and
Kurosaki
,
K.
,
2007
, “
Thermophysical Properties of BaY2O4: A New Candidate Material for Thermal Barrier Coatings
,”
Mater. Lett.
,
61
(11–12), pp.
2303
2306
.
28.
Markocsan
,
N.
,
Nylén
,
P.
,
Wigren
,
J.
, and
Li
,
X.-H.
,
2007
, “
Low Thermal Conductivity Coatings for Gas Turbine Applications
,”
J. Therm. Spray Technol.
,
16
(
4
), pp.
498
505
.
29.
Matsumoto
,
M.
,
Aoyama
,
K.
,
Matsubara
,
H.
,
Takayama
,
K.
,
Banno
,
T.
,
Kagiya
,
Y.
, and
Sugita
,
Y.
,
2005
, “
Thermal Conductivity and Phase Stability of Plasma Sprayed ZrO2–Y2O3–La2O3 Coatings
,”
Surf. Coat. Technol.
,
194
(
1
), pp.
31
35
.
30.
Matsumoto
,
M.
,
Takayama
,
H.
,
Yokoe
,
D.
,
Mukai
,
K.
,
Matsubara
,
H.
,
Kagiya
,
Y.
, and
Sugita
,
Y.
,
2006
, “
Thermal Cycle Behavior of Plasma Sprayed La2O3, Y2O3 Stabilized ZrO2 Coatings
,”
Scr. Mater.
,
54
(
12
), pp.
2035
2039
.
31.
Mogilevsky
,
P.
,
Boakye
,
E. E.
, and
Hay
,
R. S.
,
2007
, “
Solid Solubility and Thermal Expansion in a LaPO4–YPO4 System
,”
J. Am. Ceram. Soc.
,
90
(
6
), pp.
1899
1907
.
32.
Padture
,
N. P.
, and
Klemens
,
P. G.
,
1997
, “
Low Thermal Conductivity in Garnets
,”
J. Am. Ceram. Soc.
,
80
(
4
), pp.
1018
1020
.
33.
Pan
,
W.
,
Wan
,
C. L.
,
Xu
,
Q.
,
Wang
,
J.
, and
Qu
,
Z. X.
,
2007
, “
Thermal Diffusivity of Samarium–Gadolinium Zirconate Solid Solutions
,”
Thermochim. Acta
,
455
(1–2), pp.
16
20
.
34.
Petric
,
A.
, and
Ling
,
H.
,
2007
, “
Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
90
(
5
), pp.
1515
1520
.
35.
Pitek
,
F. M.
, and
Levi
,
C. G.
,
2007
, “
Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 System
,”
Surf. Coat. Technol.
,
201
(
12
), pp.
6044
6050
.
36.
Raghavan
,
S.
,
Wang
,
H.
,
Dinwiddie
,
R. B.
,
Porter
,
W. D.
, and
Vassen
,
R.
,
2004
, “
Ta2O5/Nb2O5 and Y2O3 Co-Doped Zirconias for Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
87
(
3
), pp.
431
437
.
37.
Schaedler
,
T. A.
,
Francillon
,
W.
,
Gandhi
,
A. S.
,
Grey
,
C. P.
,
Sampath
,
S.
, and
Levi
,
C. G.
,
2005
, “
Phase Evolution in the YO1.5–TiO2–ZrO2 System Around the Pyrochlore Region
,”
Acta Mater.
,
53
(
10
), pp.
2957
2968
.
38.
Schaedler
,
T. A.
,
Leckie
,
R. M.
,
Krämer
,
S.
,
Evans
,
A. G.
, and
Levi
,
C. G.
,
2007
, “
Toughening of Nontransformable t’-YSZ by Addition of Titania
,”
J. Am. Ceram. Soc.
,
90
(
12
), pp.
3896
3901
.
39.
Gaul
,
G.
,
2004
, “
Advanced Turbine Systems Program—Phase III—Technical Progress—Final Report
,” Siemens Westinghouse Power Corporation, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, DOE Contract Nos. DE-AC21-93MC30247 and DE-FC21-95MC32267, pp. 1–240.
40.
Stecura
,
S.
,
1987
, “
New ZrO2-Yb2O3 Plasma-Sprayed Coatings for Thermal Barrier Applications
,”
Thin Solid Films
,
150
(
1
), pp.
15
40
.
41.
Stöver
,
D.
,
Pracht
,
G.
,
Lehmann
,
H.
,
Dietrich
,
M.
,
Döring
,
J.-E.
, and
Vassen
,
R.
,
2004
, “
New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
13
(
1
), pp.
76
83
.
42.
Vassen
,
R.
,
Cao
,
X.
,
Tietz
,
F.
,
Basu
,
D.
, and
Stöver
,
D.
,
2000
, “
Zirconates as New Materials for Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
83
(
8
), pp.
2023
2208
.
43.
Vassen
,
R.
,
Traeger
,
F.
, and
Stöver
,
D.
,
2004
, “
New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems
,”
Int. J. Appl. Ceram. Technol.
,
1
(
4
), pp.
351
361
.
44.
Winter
,
M. R.
, and
Clarke
,
D. R.
,
2007
, “
Oxide Materials With Low Thermal Conductivity
,”
J. Am. Ceram. Soc.
,
90
(
2
), pp.
533
540
.
45.
Wu
,
J.
,
Wei
,
X.
,
Padture
,
N. P.
,
Klemens
,
P. G.
,
Gell
,
M.
,
Garcıa
,
E.
, Miranzo, P., and Osendi, M. I.,
2002
, “
Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications
,”
J. Am. Ceram. Soc.
,
85
(
12
), pp.
3031
3035
.
46.
Wu
,
J.
,
Padture
,
N. P.
,
Klemens
,
P. G.
,
Gell
,
M.
,
García
,
E.
,
Miranzo
,
P.
, and
Osendi
,
M. I.
,
2002
, “
Thermal Conductivity of Ceramics in the ZrO2-GdO1.5 System
,”
J. Mater. Res.
,
17
(
12
), pp.
3193
3200
.
47.
Wu
,
J.
,
Padture
,
N. P.
, and
Gell
,
M.
,
2004
, “
High-Temperature Chemical Stability of Low Thermal Conductivity ZrO2–GdO1:5 Thermal-Barrier Ceramics in Contact With a-Al2O3
,”
Scr. Mater.
,
50
(
10
), pp.
1315
1318
.
48.
Xu
,
Q.
,
Pan
,
W.
,
Wang
,
J.
,
Wan
,
C.
,
Qi
,
L.
,
Miao
,
H.
, Mori, K., and Torigoe, T.,
2006
, “
Rare-Earth Zirconate Ceramics With Fluorite Structure for Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
89
(
1
), pp.
340
342
.
49.
Yamanaka
,
S.
,
Kurosaki
,
K.
,
Oyama
,
T.
,
Muta
,
H.
,
Uno
,
M.
,
Matsuda
,
T.
, and
Kobayashi
,
S.-I.
,
2005
, “
Thermophysical Properties of Perovskite-Type Strontium Cerate and Zirconate
,”
J. Am. Ceram. Soc.
,
88
(
6
), pp.
1496
1499
.
50.
Yokokawa
,
H.
,
Sakai
,
N.
, and
Kawada
,
T.
,
1992
, “
Phase Diagram Calculations for ZrO2 Based Ceramics: Thermodynamic Regularities in Zirconate Formation and Solubilities of Transition Metal Oxides
,”
Science and Technology of Zirconia V
,
Technomic Publishing
,
Lancaster, PA
, pp.
59
68
.
51.
Zhou
,
H.
,
Yi
,
D.
,
Yu
,
Z.
, and
Xiao
,
L.
,
2007
, “
Preparation and Thermophysical Properties of CeO2 Doped La2Zr2O7 Ceramic for Thermal Barrier Coatings
,”
J. Alloys Compd.
,
438
(1–2), pp.
217
221
.
52.
Zhu
,
D.
, and
Miller
,
R. A.
,
2004
, “
Development of Advanced Low Conductivity Thermal Barrier Coatings
,”
Int. J. Appl. Ceram. Technol.
,
1
(
4
), pp.
86
94
.
53.
Zhu
,
D.
,
Nesbitt
,
J. A.
,
Barrett
,
C. A.
,
McCue
,
T. R.
, and
Miller
,
R. A.
,
2004
, “
Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
13
(
1
), pp.
84
92
.
54.
Zhu
,
D.
,
Chen
,
Y. L.
, and
Miller
,
R. A.
,
2004
, “
Defect Clustering and Nanophase Structure Characterization of Multicomponent Rare Earth-Oxide-Doped Zirconia-Yttria Thermal Barrier Coatings
,” NASA Glenn Research Center, Cleveland, OH, Report No.
NASA/TM-2004-212480
.
55.
Bossmann
,
H.-P.
,
Bachegowda
,
S.
, and
Schnell
,
A.
,
2010
, “
Manufacturing Optimization for Bondcoat/Thermal Barrier Coating Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
022101
.
56.
Witz
,
G.
,
Staerk
,
K. F.
,
Maggi
,
C. M.
,
Krasselt
,
U.
, and
Bossmann
,
H.-P.
,
2014
, “
Burner Rig Testing of Thermal Barrier Coatings for Lifetime Prediction
,”
ASME
Paper No. GT2014-25372.
You do not currently have access to this content.