High overall pressure ratio (OPR) engine cycles for reduced NOx emissions will generate new aggravated requirements and boundary conditions by implementing low emission combustion technologies into advanced engine architectures. Lean burn combustion systems will have a significant impact on the temperature and velocity traverse at the combustor exit. With the transition to high-pressure engines, it is essential to fully understand and determine the high energetic interface between combustor and turbine to avoid excessive cooling. Spatially resolved temperatures were measured at different operating conditions using planar laser-induced fluorescence of OH (OH-PLIF) and filtered Rayleigh scattering (FRS), the latter being used in a combustor environment for the first time. Apart from a conventional signal detection arrangement, FRS was also applied with an endoscope for signal collection, to assess its feasibility for future application in a full annular combustor with restricted optical access. Both techniques are complementary in several respects, which justified their combined application. OH-PLIF allows instantaneous measurements and therefore enables local temperature statistics, but is limited to relatively high temperatures. On the other hand, FRS can also be applied at low temperatures, which makes it particularly attractive for measurements in cooling layers. However, FRS requires long sampling times and therefore can only provide temporal averages. When applied in combination, the accuracy of both techniques could be improved by each method helping to overcome the other's shortcomings.

References

1.
von der Bank
,
R.
,
Donnerhack
,
S.
,
Rae
,
A.
,
Cazalens
,
M.
,
Lundbladh
,
A.
, and
Dietz
,
M.
,
2014
, “
LEMCOTEC: Improving the Core-Engine Thermal Efficiency
,”
ASME
Paper No. GT2014-25040.
2.
Raynaud
,
F.
,
Eggels
,
R. L. G. M.
,
Staufer
,
M.
, and
Sadiki
,
A.
,
2015
, “
Towards Unsteady Simulation of Combustor–Turbine Interaction Using an Integrated Approach
,”
ASME
Paper No. GT2015-42110.
3.
Andreini
,
A.
,
Facchini
,
B.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2015
, “
Hybrid RANS-LES Modeling of a Hot Streak Generator Oriented to the Study of Combustor–Turbine Interaction
,”
ASME
Paper No. GT2015-42402.
4.
Schmid
,
G.
,
Krichbaum
,
A.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2014
, “
The Impact of Realistic Inlet Swirl in a 1½ Stage Axial Turbine
,”
ASME
Paper No. GT2014-26716.
5.
Cresci
,
I.
,
Ireland
,
P. T.
, and
Bacic.
,
M.
,
2015
, “
Velocity and Turbulence Intensity Profiles Downstream of a Long Reach Endwall Double Row of Film Cooling Holes in a Gas Turbine Combustor Representative Environment
,”
ASME
Paper No. GT2015-42307.
6.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Flowfield and Temperature Profiles Measurements on a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42217.
7.
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Turbulence Field Measurements at the Exit of a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42218.
8.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
,
Rosic
,
B.
, and
Uchida
,
S.
,
2015
, “
A New Experimental Facility to Investigate Combustor–Turbine Interactions in Gas Turbines With Multiple Can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
.
9.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Experimental and Numerical Investigation of Combustor–Turbine Interaction Using an Isothermal, Nonreacting Tracer
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081501
.
10.
Estevadeordal
,
J.
,
Opaits
,
D.
, and
Kalra
,
C.
,
2014
, “
Investigation of Filtered Rayleigh Scattering Techniques for Rig Testing Diagnostics
,”
ASME
Paper No. GT2014-26887.
11.
Pitz
,
R. W.
,
Wehrmeyer
,
J. A.
,
Ribarov
,
L. A.
,
Oguss
,
D. A.
,
Batliwala
,
F.
,
DeBarber
,
P. A.
,
Deusch
,
S.
, and
Dimotakis
,
P. E.
,
2000
, “
Unseeded Molecular Flow Tagging in Cold and Hot Flows Using Ozone and Hydroxyl Tagging Velocimetry
,”
Meas. Sci. Technol.
,
11
(
9
), pp.
1259
1271
.
12.
Ribarov
,
L. A.
,
Wehrmeyer
,
J. A.
,
Hu
,
S.
, and
Pitz
,
R. W.
,
2004
, “
Multiline Hydroxyl Tagging Velocimetry Measurements in Reacting and Nonreacting Experimental Flows
,”
Exp. Fluids
,
37
(
1
), pp.
65
74
.
13.
Ribarov
,
L. A.
,
Hu
,
S.
,
Wehrmeyer
,
J. A.
, and
Pitz
,
R. W.
,
2004
, “
Hydroxyl Tagging Velocimetry Method and Optimization: Signal Intensity and Spectroscopy
,”
Appl. Opt.
,
44
(
31
), pp.
6616
6626
.
14.
DLR
, 2016, “
Hochdruck-Brennkammer-Prüfstand 1 (HBK-1)
,” DLR,
German Aerospace Center
, Cologne, Germany.
15.
Meier
,
U.
,
Freitag
,
S.
,
Heinze
,
J.
,
Lange
,
L.
,
Magens
,
E.
,
Schroll
,
M.
,
Willert
,
C.
,
Hassa
,
C.
,
Bagchi
,
I. K.
,
Lazik
,
W.
, and
Whiteman
,
M.
,
2013
, “
Characterization of a Lean Burn Module Air Blast Pilot Injector With Laser Techniques
,”
ASME
Paper No. GT2013-94796.
16.
Meier
,
U.
,
Heinze
,
J.
,
Magens
,
E.
,
Schroll
,
M.
,
Hassa
,
C.
,
Bake
,
S.
, and
Doerr
,
Th.
,
2015
, “
Optically Accessible Multisector Combustor: Application and Challenges of Laser Techniques at Realistic Operating Conditions
,”
ASME
Paper No. GT2015-43391.
17.
Heinze
,
J.
,
Meier
,
U.
,
Behrendt
,
T.
,
Willert
,
C.
,
Geigle
,
K.-P.
,
Lammel
,
O.
, and
Lückerath
,
R.
,
2011
, “
PLIF Thermometry Based on Measurements of Absolute Concentrations of the OH Radical
,”
Z. Phys. Chem.
,
225
(
11–12
), pp.
1315
1341
.
18.
Miles
,
R. B.
,
Lempert
,
W. R.
, and
Forkey
,
J. N.
,
2001
, “
Laser Rayleigh Scattering
,”
Meas. Sci. Technol.
,
12
(
5
), pp.
R33
R51
.
19.
Miles
,
R.
, and
Lempert
,
W.
,
1990
, “
Two-Dimensional Measurement of Density, Velocity, and Temperature in Turbulent High-Speed Air Flows by UV Rayleigh Scattering
,”
Appl. Phys. B: Lasers Opt.
,
51
(
1
), pp.
1
7
.
20.
Forkey
,
J.
,
Finkelstein
,
N.
,
Lempert
,
W.
, and
Miles
,
R.
,
1996
, “
Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements: Aerodynamic Measurement Technology
,”
AIAA J.
,
34
(
3
), pp.
442
448
.
21.
Doll
,
U.
,
Stockhausen
,
G.
, and
Willert
,
C.
,
2014
, “
Endoscopic Filtered Rayleigh Scattering for the Analysis of Ducted Gas Flows
,”
Exp. Fluids
,
55
(
3
), pp.
1
13
.
22.
Pitz
,
R.
,
Cattolica
,
R.
,
Robben
,
F.
, and
Talbot
,
L.
,
1976
, “
Temperature and Density in a Hydrogen–Air Flame From Rayleigh Scattering
,”
Combust. Flame
,
27
, pp.
313
320
.
You do not currently have access to this content.