A detailed aerothermal characterization of an advanced leading edge (LE) cooling system has been performed by means of experimental measurements. Heat transfer coefficient distribution has been evaluated exploiting a steady-state technique using thermochromic liquid crystals (TLCs), while flow field has been investigated by means of particle image velocimetry (PIV). The geometry key features are the multiple impinging jets and the four rows of coolant extraction holes, and their mass flow rate distribution is representative of real engine working conditions. Tests have been performed in both static and rotating conditions, replicating a typical range of jet Reynolds number (Rej), from 10,000 to 40,000, and rotation number (Roj) up to 0.05. Different crossflow conditions (CR) have been used to simulate the three main blade regions (i.e., tip, mid, and hub). The aerothermal field turned out to be rather complex, but a good agreement between heat transfer coefficient and flow field measurement has been found. In particular, jet bending strongly depends on crossflow intensity, while rotation has a weak effect on both jet velocity core and area-averaged Nusselt number. Rotational effects increase for the lower crossflow tests. Heat transfer pattern shape has been found to be substantially Reynolds independent.

References

1.
Metzger
,
D.
, and
Bunker
,
R.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part II—Impingement Cooling With Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
459
466
.
2.
Metzger
,
D. E.
,
Yamashita
,
T.
, and
Jenkins
,
C.
,
1969
, “
Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets
,”
ASME J. Eng. Gas Turbines Power
,
91
(
3
), pp.
149
155
.
3.
Metzger
,
D.
,
Takeuchi
,
D.
, and
Kuenstler
,
P.
,
1973
, “
Effectiveness and Heat Transfer With Full-Coverage Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
95
(
3
), pp.
180
184
.
4.
Kercher
,
D.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Gas Turbines Power
,
92
(
1
), pp.
73
82
.
5.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
, Vol.
13
,
Academic Press
,
New York
, pp.
1
60
.
6.
Florschuetz
,
L.
,
Truman
,
C.
, and
Metzger
,
D.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME
Paper No. 81-GT-77.
7.
Florschuetz
,
L.
,
Metzger
,
D.
, and
Su
,
C.
,
1983
, “
Heat Transfer Characteristics for Jet Array Impingement With Initial Crossflow
,”
ASME
Paper No. 83-GT-28.
8.
Behbahani
,
A.
, and
Goldstein
,
R.
,
1983
, “
Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets
,”
ASME J. Eng. Gas Turbines Power
,
105
(
2
), pp.
354
360
.
9.
Chupp
,
R. E.
,
Helms
,
H. E.
, and
McFadden
,
P. W.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement-Cooled Turbine Airfoils
,”
J. Aircr.
,
6
(
3
), pp.
203
208
.
10.
Metzger
,
D. E.
,
Baltzer
,
R.
, and
Jenkins
,
C.
,
1972
, “
Impingement Cooling Performance in Gas Turbine Airfoils Including Effects of Leading Edge Sharpness
,”
ASME J. Eng. Gas Turbines Power
,
94
(
3
), pp.
219
225
.
11.
Hrycak
,
P.
,
1981
, “
Heat Transfer From a Row of Impinging Jets to Concave Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
24
(
3
), pp.
407
419
.
12.
Bunker
,
R.
, and
Metzger
,
D.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part II—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
13.
Taslim
,
M.
,
Pan
,
Y.
, and
Spring
,
S.
,
2001
, “
An Experimental Study of Impingement on Roughened Airfoil Leading-Edge Walls With Film Holes
,”
ASME
Paper No. 2001-GT-0152.
14.
Taslim
,
M.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME
Paper No. GT2003-38118.
15.
Taslim
,
M.
, and
Bethka
,
D.
,
2009
, “
Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow
,”
ASME J. Turbomach.
,
131
(
1
), p.
011021
.
16.
Elebiary
,
K.
, and
Taslim
,
M.
,
2013
, “
Experimental/Numerical Crossover Jet Impingement in an Airfoil Leading-Edge Cooling Channel
,”
ASME J. Turbomach.
,
135
(
1
), p.
011037
.
17.
Andrei
,
L.
,
Carcasci
,
C.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2013
, “
Heat Transfer Measurements in a Leading Edge Geometry With Racetrack Holes and Film Cooling Extraction
,”
ASME J. Turbomach.
,
135
(
3
), p.
031020
.
18.
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Ohlendorf
,
N.
,
2013
, “
Experimental Investigation on the Heat Transfer in a Turbine Airfoil Leading Edge Region: Effects of The Wedge Angle and Jet Impingement Geometries
,”
European Turbomachinery Conference
(
ETC
), Lappeenranta, Finland, Apr. 15–19, Paper No. ETC2013-130.
19.
Iacovides
,
H.
,
Kounadis
,
D.
,
Launder
,
B. E.
,
Li
,
J.
, and
Xu
,
Z.
,
2005
, “
Experimental Study of the Flow and Thermal Development of a Row of Cooling Jets Impinging on a Rotating Concave Surface
,”
ASME J. Turbomach.
,
127
(
1
), pp.
222
229
.
20.
Craft
,
T.
,
Iacovides
,
H.
, and
Mostafa
,
N.
,
2008
, “
Modelling of Three-Dimensional Jet Array Impingement and Heat Transfer on a Concave Surface
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
687
702
.
21.
Craft
,
T. J.
,
Iacovides
,
H.
, and
Mostafa
,
N. A.
,
2008
, “
Numerical Modelling of Flow and Heat Transfer From an Array of Jets Impinging Onto a Concave Surface Under Stationary and Rotating Conditions
,”
ASME
Paper No. GT2008-50624.
22.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2008
, “
Heat/Mass Transfer Measurement on Concave Surface in Rotating Jet Impingement
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1952
1958
.
23.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2009
, “
Effect of Jet Direction on Heat/Mass Transfer of Rotating Impingement Jet
,”
Appl. Therm. Eng.
,
29
(
14
), pp.
2914
2920
.
24.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2009
, “
Heat/Mass Transfer in Rotating Impingement/Effusion Cooling With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
52
(
13
), pp.
3109
3117
.
25.
Deng
,
H.
,
Gu
,
Z.
,
Zhu
,
J.
, and
Tao
,
Z.
,
2012
, “
Experiments on Impingement Heat Transfer With Film Extraction Flow on the Leading Edge of Rotating Blades
,”
Int. J. Heat Mass Transfer
,
55
(
21
), pp.
5425
5435
.
26.
Jung
,
E. Y.
,
Park
,
C. U.
,
Lee
,
D. H.
,
Park
,
J. S.
,
Park
,
S.
, and
Cho
,
H. H.
,
2013
, “
Effect of Rotation on Heat Transfer of a Concave Surface With Array Impingement Jet
,”
ASME
Paper No. GT2013-95443.
27.
Bonanni
,
L.
,
Carcasci
,
C.
,
Facchini
,
B.
, and
Tarchi
,
L.
,
2012
, “
Experimental Survey on Heat Transfer in a Trailing Edge Cooling System: Effects of Rotation in Internal Cooling Ducts
,”
ASME
Paper No. GT2012-69638.
28.
Chan
,
T.
,
Ashforth-Frost
,
S.
, and
Jambunathan
,
K.
,
2001
, “
Calibrating for Viewing Angle Effect During Heat Transfer Measurements on a Curved Surface
,”
Int. J. Heat Mass Transfer
,
44
(
12
), pp.
2209
2223
.
29.
Bianchini
,
C.
,
Burberi
,
E.
,
Cocchi
,
L.
,
Facchini
,
B.
,
Massini
,
D.
, and
Pievaroli
,
M.
,
2015
, “
Numerical Analysis and Preliminary Experimental Heat Transfer Measurements on a Novel Rotating Leading Edge Model
,”
12th International Symposium on Experimental Computational Aerothermodynamics of Internal Flows
, Genova, Italy, July 13–16.
30.
Willert
,
C.
,
1997
, “
Stereoscopic Digital Particle Image Velocimetry for Application in Wind Tunnel Flows
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1465
1479
.
31.
Furlani, L., Armellini, A., Casarsa, L., 2017, “
Effects of Rotation and Buoyancy Forces on the Flow Field Behavior Inside a Triangular Rib Roughened Channel
,”
ASME. J. Turbomach.
,
139
(5), p.
051001
.
32.
Armellini
,
A.
,
Mucignat
,
C.
,
Casarsa
,
L.
, and
Giannattasio
,
P.
,
2012
, “
Flow Field Investigations in Rotating Facilities by Means of Stationary PIV Systems
,”
Meas. Sci. Technol.
,
23
(
2
), p.
025302
.
33.
Furlani, L., Armellini, A., Casarsa, L., 2016, “
Rotational Effects on the Flow Field Inside a Leading Edge Impingement Cooling Passage
,”
Exp. Therm. Fluid Sci.
,
76
, pp. 57–66.
34.
ASME
,
1985
, “
Measurement Uncertainty in Instrument and Apparatus
,” ASME, New York, Standard No. ANSI/ASME PTC 19.1-1985 of Performance Test Code.
35.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
36.
Armellini
,
A.
,
Casarsa
,
L.
, and
Giannattasio
,
P.
,
2009
, “
Separated Flow Structures Around a Cylindrical Obstacle in a Narrow Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
604
619
.
37.
Andreini
,
A.
,
Burberi
,
E.
,
Cocchi
,
L.
,
Facchini
,
B.
,
Massini
,
D.
, and
Pievaroli
,
M.
,
2015
, “
Heat Transfer Investigation on an Internal Cooling System of a Gas Turbine Leading Edge Model
,”
Energy Procedia
,
82
, pp.
222
229
.
38.
Burberi
,
E.
,
Massini
,
D.
,
Cocchi
,
L.
,
Mazzei
,
L.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2017
, “
Effect of Rotation on a Gas Turbine Blade Internal Cooling System: Numerical Investigation
,”
ASME J. Turbomach.
,
139
(
3
), p.
031005
.
You do not currently have access to this content.